1. Computational and Systems Biology
  2. Neuroscience
Download icon

FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch

  1. Zachary Daniel Burkett  Is a corresponding author
  2. Nancy F Day
  3. Todd Haswell Kimball
  4. Caitlin M Aamodt
  5. Jonathan B Heston
  6. Austin T Hilliard
  7. Xinshu Xiao
  8. Stephanie A White
  1. University of California, Los Angeles, United States
  2. Stanford University, United States
Research Article
  • Cited 9
  • Views 2,619
  • Annotations
Cite this article as: eLife 2018;7:e30649 doi: 10.7554/eLife.30649

Abstract

Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans.

Article and author information

Author details

  1. Zachary Daniel Burkett

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    zburkett@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5153-485X
  2. Nancy F Day

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Todd Haswell Kimball

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin M Aamodt

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan B Heston

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7479-1122
  6. Austin T Hilliard

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinshu Xiao

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephanie A White

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (RO1MH07012)

  • Stephanie A White

National Institutes of Health (5T32HD007228)

  • Zachary Daniel Burkett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal use was in accordance with NIH guidelines for experiments involving vertebrate animals and approved by the University of California, Los Angeles Chancellor's Institutional Animal Care and Use Committee (IACUC) under protocol (#2001-54). All surgical procedures were performed under isoflurane anesthetic.

Reviewing Editor

  1. Liqun Luo, Howard Hughes Medical Institute, Stanford University, United States

Publication history

  1. Received: July 24, 2017
  2. Accepted: January 22, 2018
  3. Accepted Manuscript published: January 23, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)
  5. Version of Record updated: March 9, 2018 (version 3)

Copyright

© 2018, Burkett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,619
    Page views
  • 355
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Bjoern Gaertner et al.
    Research Article Updated

    Long noncoding RNAs (lncRNAs) are a heterogenous group of RNAs, which can encode small proteins. The extent to which developmentally regulated lncRNAs are translated and whether the produced microproteins are relevant for human development is unknown. Using a human embryonic stem cell (hESC)-based pancreatic differentiation system, we show that many lncRNAs in direct vicinity of lineage-determining transcription factors (TFs) are dynamically regulated, predominantly cytosolic, and highly translated. We genetically ablated ten such lncRNAs, most of them translated, and found that nine are dispensable for pancreatic endocrine cell development. However, deletion of LINC00261 diminishes insulin+ cells, in a manner independent of the nearby TF FOXA2. One-by-one disruption of each of LINC00261's open reading frames suggests that the RNA, rather than the produced microproteins, is required for endocrine development. Our work highlights extensive translation of lncRNAs during hESC pancreatic differentiation and provides a blueprint for dissection of their coding and noncoding roles.

    1. Computational and Systems Biology
    2. Neuroscience
    Ioannis Pisokas et al.
    Research Article Updated

    Recent studies of the Central Complex in the brain of the fruit fly have identified neurons with activity that tracks the animal’s heading direction. These neurons are part of a neuronal circuit with dynamics resembling those of a ring attractor. The homologous circuit in other insects has similar topographic structure but with significant structural and connectivity differences. We model the connectivity patterns of two insect species to investigate the effect of these differences on the dynamics of the circuit. We illustrate that the circuit found in locusts can also operate as a ring attractor but differences in the inhibition pattern enable the fruit fly circuit to respond faster to heading changes while additional recurrent connections render the locust circuit more tolerant to noise. Our findings demonstrate that subtle differences in neuronal projection patterns can have a significant effect on circuit performance and illustrate the need for a comparative approach in neuroscience.