1. Structural Biology and Molecular Biophysics
Download icon

Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor

Research Article
  • Cited 32
  • Views 3,618
  • Annotations
Cite this article as: eLife 2017;6:e30688 doi: 10.7554/eLife.30688

Abstract

Intrinsically disordered proteins (IDPs) present a functional paradox because they lack stable tertiary structure, but nonetheless play a central role in signaling, utilizing a process known as allostery. Historically, allostery in structured proteins has been interpreted in terms of propagated structural changes that are induced by effector binding. Thus, it is not clear how IDPs, lacking such well-defined structures, can allosterically affect function. Here we show a mechanism by which an IDP can allosterically control function by simultaneously tuning transcriptional activation and repression, using a novel strategy that relies on the principle of 'energetic frustration'. We demonstrate that human glucocorticoid receptor tunes this signaling in vivo by producing translational isoforms differing only in the length of the disordered region, which modulates the degree of frustration. We expect this frustration-based model of allostery will prove to be generally important in explaining signaling in other IDPs.

Article and author information

Author details

  1. Jing Li

    T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jordan T White

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3202-4181
  3. Harry Saavedra

    T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James O Wrabl

    T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hesam N Motlagh

    T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kaixian Liu

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James Sowers

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Trina Schroer

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5065-1835
  9. E Brad Thompson

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1578-0241
  10. Vincent J Hilser

    T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    For correspondence
    hilser@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7173-0073

Funding

National Science Foundation (MCB-1330211)

  • Jing Li
  • Jordan T White
  • Harry Saavedra
  • James O Wrabl
  • Hesam N Motlagh
  • Kaixian Liu
  • James Sowers
  • Vincent J Hilser

Johns Hopkins University (JHU Institutional Funds)

  • Vincent J Hilser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Publication history

  1. Received: July 24, 2017
  2. Accepted: October 11, 2017
  3. Accepted Manuscript published: October 12, 2017 (version 1)
  4. Version of Record published: November 21, 2017 (version 2)
  5. Version of Record updated: February 12, 2018 (version 3)

Copyright

© 2017, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,618
    Page views
  • 715
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Dennis V Pedersen et al.
    Research Article

    Properdin stabilizes convertases formed upon activation of the complement cascade within the immune system. The biological activity of properdin depends on the oligomerization state, but whether properdin oligomers are rigid and how their structure links to function remains unknown. We show by combining electron microscopy and solution scattering, that properdin oligomers adopt extended rigid and well-defined conformations that are well approximated by single models of apparent n-fold rotational symmetry with dimensions of 230-360 Å. Properdin monomers are pretzel shaped molecules with limited flexibility. In solution, properdin dimers are curved molecules whereas trimers and tetramers are close to being planar molecules. Structural analysis indicates that simultaneous binding through all binding sites to surface linked convertases is unlikely for properdin trimer and tetramers. We show that multivalency alone is insufficient for full activity in a cell lysis assay. Hence, the observed rigid extended oligomer structure is an integral component of properdin function.