Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair

Abstract

Tissue injury leads to early wound-associated reactive oxygen species (ROS) production that mediate tissue regeneration. To identify mechanisms that function downstream of redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin reporter activity at the wound margin. Moreover, both ROS and vimentin were necessary for collagen production and reorganization into projections at the leading edge of the wound. Second harmonic generation time-lapse imaging revealed that the collagen projections were associated with dynamic epithelial extensions at the wound edge during wound repair. Perturbing collagen organization by burn wound disrupted epithelial projections and subsequent wound healing. Taken together our findings suggest that ROS and vimentin integrate early wound signals to orchestrate the formation of collagen-based projections that guide regenerative growth during efficient wound repair.

Article and author information

Author details

  1. Danny LeBert

    Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jayne M Squirrell

    Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chrissy Freisinger

    Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julie Rindy

    Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Netta Golenberg

    Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Grace Frecentes

    Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Angela Gibson

    Department of Surgery, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kevin W Eliceiri

    Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna Huttenlocher

    Department of Pediatrics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    huttenlocher@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7940-6254

Funding

National Institute of General Medical Sciences (GM1 18027 01)

  • Anna Huttenlocher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fiona M Watt, King's College London, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of the University of Wisconsin.

Version history

  1. Received: July 25, 2017
  2. Accepted: January 15, 2018
  3. Accepted Manuscript published: January 16, 2018 (version 1)
  4. Version of Record published: January 30, 2018 (version 2)

Copyright

© 2018, LeBert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,549
    views
  • 518
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danny LeBert
  2. Jayne M Squirrell
  3. Chrissy Freisinger
  4. Julie Rindy
  5. Netta Golenberg
  6. Grace Frecentes
  7. Angela Gibson
  8. Kevin W Eliceiri
  9. Anna Huttenlocher
(2018)
Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair
eLife 7:e30703.
https://doi.org/10.7554/eLife.30703

Share this article

https://doi.org/10.7554/eLife.30703

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.