TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells

  1. Katerina Leonova
  2. Alfiya Safina
  3. Elimelech Nesher
  4. Poorva Sandlesh
  5. Rachel Pratt
  6. Catherine Burkhart
  7. Brittany Lipchick
  8. Ilya Gitlin
  9. Costakis Frangou
  10. Igor Koman
  11. Jianmin Wang
  12. Kirill Kirsanov
  13. Marianna G Yakubovskaya
  14. Andrei V Gudkov
  15. Katerina Gurova  Is a corresponding author
  1. Roswell Park Cancer Institute, United States
  2. Buffalo BioLabs, United States
  3. Ariel University, Israel
  4. Blokhin Cancer Research Center, Russian Federation

Abstract

Cellular Responses to the loss of genomic stability are well-established, while how mammalian cells respond to chromatin destabilization is largely unknown. We previously found that DNA demethylation on p53-deficient background leads to transcription of repetitive heterochromatin elements, followed by an interferon response, a phenomenon we named TRAIN (Transcription of Repeats Activates INterferon). Here, we report that curaxin, an anticancer small molecule, destabilizing nucleosomes via disruption of histone/DNA interactions, also induces TRAIN. Furthermore, curaxin inhibits oncogene-induced transformation and tumor growth in mice in an interferon-dependent manner, suggesting that anti-cancer activity of curaxin, previously attributed to p53-activation and NF-kappaB-inhibition, may also involve induction of interferon response to epigenetic derepression of the cellular 'repeatome'. Moreover, we observed that another type of drugs decondensing chromatin, HDAC inhibitor, also induces TRAIN. Thus, we proposed that TRAIN may be one of the mechanisms ensuring epigenetic integrity of mammalian cells via elimination of cells with desilenced chromatin.

Data availability

The following data sets were generated
    1. Katerina Gurova
    (2017) Effect of CBL0137 on gene expression in mouse cells and tissues
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE102768).

Article and author information

Author details

  1. Katerina Leonova

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alfiya Safina

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elimelech Nesher

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8326-5535
  4. Poorva Sandlesh

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Pratt

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine Burkhart

    Buffalo BioLabs, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brittany Lipchick

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilya Gitlin

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Costakis Frangou

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Igor Koman

    Department of Molecular Biology, Ariel University, Ariel, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Jianmin Wang

    Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kirill Kirsanov

    Department of Chemical Carcinogenesis, Blokhin Cancer Research Center, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  13. Marianna G Yakubovskaya

    Department of Chemical Carcinogenesis, Blokhin Cancer Research Center, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrei V Gudkov

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Katerina Gurova

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    For correspondence
    katerina.gurova@roswellpark.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9189-0712

Funding

National Cancer Institute (RO1CA197967)

  • Katerina Gurova

National Cancer Institute (R21CA198395)

  • Katerina Gurova

Russian Science Foundation (17-15-01526)

  • Marianna G Yakubovskaya

Roswell Park Cancer Center (P30CA016056)

  • Katerina Gurova

Incuron LLC

  • Katerina Gurova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1093M) of Roswell Park Cancer Institute. The protocol was approved by the Committee on the Ethics of Animal Experiments of Roswell Park Cancer Institute.

Copyright

© 2018, Leonova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,549
    views
  • 453
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katerina Leonova
  2. Alfiya Safina
  3. Elimelech Nesher
  4. Poorva Sandlesh
  5. Rachel Pratt
  6. Catherine Burkhart
  7. Brittany Lipchick
  8. Ilya Gitlin
  9. Costakis Frangou
  10. Igor Koman
  11. Jianmin Wang
  12. Kirill Kirsanov
  13. Marianna G Yakubovskaya
  14. Andrei V Gudkov
  15. Katerina Gurova
(2018)
TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells
eLife 7:e30842.
https://doi.org/10.7554/eLife.30842

Share this article

https://doi.org/10.7554/eLife.30842

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    Hongqian Chen, Hui-Qing Fang ... Peng Liu
    Tools and Resources

    The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.