TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells

  1. Katerina Leonova
  2. Alfiya Safina
  3. Elimelech Nesher
  4. Poorva Sandlesh
  5. Rachel Pratt
  6. Catherine Burkhart
  7. Brittany Lipchick
  8. Ilya Gitlin
  9. Costakis Frangou
  10. Igor Koman
  11. Jianmin Wang
  12. Kirill Kirsanov
  13. Marianna G Yakubovskaya
  14. Andrei V Gudkov
  15. Katerina Gurova  Is a corresponding author
  1. Roswell Park Cancer Institute, United States
  2. Buffalo BioLabs, United States
  3. Ariel University, Israel
  4. Blokhin Cancer Research Center, Russian Federation

Abstract

Cellular Responses to the loss of genomic stability are well-established, while how mammalian cells respond to chromatin destabilization is largely unknown. We previously found that DNA demethylation on p53-deficient background leads to transcription of repetitive heterochromatin elements, followed by an interferon response, a phenomenon we named TRAIN (Transcription of Repeats Activates INterferon). Here, we report that curaxin, an anticancer small molecule, destabilizing nucleosomes via disruption of histone/DNA interactions, also induces TRAIN. Furthermore, curaxin inhibits oncogene-induced transformation and tumor growth in mice in an interferon-dependent manner, suggesting that anti-cancer activity of curaxin, previously attributed to p53-activation and NF-kappaB-inhibition, may also involve induction of interferon response to epigenetic derepression of the cellular 'repeatome'. Moreover, we observed that another type of drugs decondensing chromatin, HDAC inhibitor, also induces TRAIN. Thus, we proposed that TRAIN may be one of the mechanisms ensuring epigenetic integrity of mammalian cells via elimination of cells with desilenced chromatin.

Data availability

The following data sets were generated
    1. Katerina Gurova
    (2017) Effect of CBL0137 on gene expression in mouse cells and tissues
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE102768).

Article and author information

Author details

  1. Katerina Leonova

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alfiya Safina

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elimelech Nesher

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8326-5535
  4. Poorva Sandlesh

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Pratt

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine Burkhart

    Buffalo BioLabs, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brittany Lipchick

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilya Gitlin

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Costakis Frangou

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Igor Koman

    Department of Molecular Biology, Ariel University, Ariel, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Jianmin Wang

    Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kirill Kirsanov

    Department of Chemical Carcinogenesis, Blokhin Cancer Research Center, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  13. Marianna G Yakubovskaya

    Department of Chemical Carcinogenesis, Blokhin Cancer Research Center, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrei V Gudkov

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Katerina Gurova

    Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, United States
    For correspondence
    katerina.gurova@roswellpark.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9189-0712

Funding

National Cancer Institute (RO1CA197967)

  • Katerina Gurova

National Cancer Institute (R21CA198395)

  • Katerina Gurova

Russian Science Foundation (17-15-01526)

  • Marianna G Yakubovskaya

Roswell Park Cancer Center (P30CA016056)

  • Katerina Gurova

Incuron LLC

  • Katerina Gurova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1093M) of Roswell Park Cancer Institute. The protocol was approved by the Committee on the Ethics of Animal Experiments of Roswell Park Cancer Institute.

Copyright

© 2018, Leonova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,531
    views
  • 450
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katerina Leonova
  2. Alfiya Safina
  3. Elimelech Nesher
  4. Poorva Sandlesh
  5. Rachel Pratt
  6. Catherine Burkhart
  7. Brittany Lipchick
  8. Ilya Gitlin
  9. Costakis Frangou
  10. Igor Koman
  11. Jianmin Wang
  12. Kirill Kirsanov
  13. Marianna G Yakubovskaya
  14. Andrei V Gudkov
  15. Katerina Gurova
(2018)
TRAIN (Transcription of Repeats Activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells
eLife 7:e30842.
https://doi.org/10.7554/eLife.30842

Share this article

https://doi.org/10.7554/eLife.30842

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.