Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases

Abstract

TOR complex 1 (TORC1) is an evolutionarily conserved protein kinase complex that promotes cellular macromolecular synthesis and suppresses autophagy. Amino acid-induced activation of mammalian TORC1 is initiated by its recruitment to the RagA/B-RagC/D GTPase heterodimer, which is anchored to lysosomal membranes through the Ragulator complex. We have identified in the model organism Schizosaccharomyces pombe a Ragulator-like complex that tethers the Gtr1-Gtr2 Rag heterodimer to the membranes of vacuoles, the lysosome equivalent in yeasts. Unexpectedly, the Ragulator-Rag complex is not required for the vacuolar targeting of TORC1, but the complex plays a crucial role in attenuating TORC1 activity independently of the Tsc1-Tsc2 complex, a known negative regulator of TORC1 signaling. The GATOR1 complex, which functions as Gtr1 GAP, is essential for the TORC1 attenuation by the Ragulator-Rag complex, suggesting that Gtr1GDP-Gtr2 on vacuolar membranes moderate TORC1 signaling for optimal cellular response to nutrients.

Article and author information

Author details

  1. Kim Hou Chia

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7958-6635
  2. Tomoyuki Fukuda

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    For correspondence
    tfukuda@med.niigata-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Fajar Sofyantoro

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Takato Matsuda

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Takamitsu Amai

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazuhiro Shiozaki

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    For correspondence
    kaz@bs.naist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0395-5457

Funding

Japan Society for the Promotion of Science (26840069)

  • Tomoyuki Fukuda

Suzuken Memorial Foundation

  • Tomoyuki Fukuda

Japan Society for the Promotion of Science (17K07330)

  • Tomoyuki Fukuda

Japan Society for the Promotion of Science (26291024)

  • Kazuhiro Shiozaki

Ministry of Education, Culture, Sports, Science, and Technology (Graduate Student Scholarship)

  • Kim Hou Chia

Panasonic Corporation (Graduate Student Scholarship)

  • Fajar Sofyantoro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roger J Davis, University of Massachusetts Medical School, United States

Version history

  1. Received: July 29, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 4, 2017 (version 1)
  4. Version of Record published: January 3, 2018 (version 2)

Copyright

© 2017, Chia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,977
    views
  • 722
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kim Hou Chia
  2. Tomoyuki Fukuda
  3. Fajar Sofyantoro
  4. Takato Matsuda
  5. Takamitsu Amai
  6. Kazuhiro Shiozaki
(2017)
Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases
eLife 6:e30880.
https://doi.org/10.7554/eLife.30880

Share this article

https://doi.org/10.7554/eLife.30880

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.