Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases

Abstract

TOR complex 1 (TORC1) is an evolutionarily conserved protein kinase complex that promotes cellular macromolecular synthesis and suppresses autophagy. Amino acid-induced activation of mammalian TORC1 is initiated by its recruitment to the RagA/B-RagC/D GTPase heterodimer, which is anchored to lysosomal membranes through the Ragulator complex. We have identified in the model organism Schizosaccharomyces pombe a Ragulator-like complex that tethers the Gtr1-Gtr2 Rag heterodimer to the membranes of vacuoles, the lysosome equivalent in yeasts. Unexpectedly, the Ragulator-Rag complex is not required for the vacuolar targeting of TORC1, but the complex plays a crucial role in attenuating TORC1 activity independently of the Tsc1-Tsc2 complex, a known negative regulator of TORC1 signaling. The GATOR1 complex, which functions as Gtr1 GAP, is essential for the TORC1 attenuation by the Ragulator-Rag complex, suggesting that Gtr1GDP-Gtr2 on vacuolar membranes moderate TORC1 signaling for optimal cellular response to nutrients.

Article and author information

Author details

  1. Kim Hou Chia

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7958-6635
  2. Tomoyuki Fukuda

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    For correspondence
    tfukuda@med.niigata-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Fajar Sofyantoro

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Takato Matsuda

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Takamitsu Amai

    Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazuhiro Shiozaki

    Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
    For correspondence
    kaz@bs.naist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0395-5457

Funding

Japan Society for the Promotion of Science (26840069)

  • Tomoyuki Fukuda

Suzuken Memorial Foundation

  • Tomoyuki Fukuda

Japan Society for the Promotion of Science (17K07330)

  • Tomoyuki Fukuda

Japan Society for the Promotion of Science (26291024)

  • Kazuhiro Shiozaki

Ministry of Education, Culture, Sports, Science, and Technology (Graduate Student Scholarship)

  • Kim Hou Chia

Panasonic Corporation (Graduate Student Scholarship)

  • Fajar Sofyantoro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,111
    views
  • 734
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kim Hou Chia
  2. Tomoyuki Fukuda
  3. Fajar Sofyantoro
  4. Takato Matsuda
  5. Takamitsu Amai
  6. Kazuhiro Shiozaki
(2017)
Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases
eLife 6:e30880.
https://doi.org/10.7554/eLife.30880

Share this article

https://doi.org/10.7554/eLife.30880

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.