1. Cancer Biology
  2. Immunology and Inflammation
Download icon

Endothelial cells express NKG2D ligands and desensitize anti-tumor NK responses

Research Article
  • Cited 2
  • Views 1,519
  • Annotations
Cite as: eLife 2017;6:e30881 doi: 10.7554/eLife.30881

Abstract

Natural Killer (NK) cells confer protection from tumors and infections by releasing cytotoxic granules and pro-inflammatory cytokines upon recognition of diseased cells. The responsiveness of NK cells to acute stimulation is dynamically tuned by steady-state receptor-ligand interactions of an NK cell with its cellular environment. Here we demonstrate that in healthy WT mice the NK activating receptor NKG2D is engaged in vivo by one of its ligands, RAE-1ε, which is expressed constitutively by lymph node endothelial cells and highly induced on tumor-associated endothelium. This interaction causes internalization of NKG2D from the NK cell surface and transmits an NK-intrinsic signal that desensitizes NK cell responses globally to acute stimulation, resulting in impaired NK anti-tumor responses in vivo.

Article and author information

Author details

  1. Thornton W Thompson

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Alexander Byungsuk Kim

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon 0000-0002-6425-4566
  3. Po-Yi Jonathan Li

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Jiaxi Wang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Benjamin T Jackson

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Kristen Ting Hui Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Lily Zhang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. David H Raulet

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    raulet@berkeley.edu
    Competing interests
    David H Raulet, Co-founder of Dragonfly Therapeutics, and serves on the Scientific Advisory Boards of Innate Pharma, Aduro Biotech and Ignite Immmunotherapy, has a financial interest in all four companies and received research support from Innate Pharma, and may benefit from commercialization of the results of this research.
    ORCID icon 0000-0002-1257-8649

Funding

National Cancer Institute (R01 CA093678)

  • David H Raulet

Innate Pharma, SAS

  • David H Raulet

National Cancer Institute (F31 CA203262)

  • Thornton W Thompson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All mice were maintained at the University of California, Berkeley and experiments were conducted in accordance with approved protocols from the Animal Care and Use Committee, under protocol number AUP-2015-10-8058.

Reviewing Editor

  1. Wayne M Yokoyama, Reviewing Editor, Howard Hughes Medical Institute, Washington University School of Medicine, United States

Publication history

  1. Received: August 1, 2017
  2. Accepted: December 11, 2017
  3. Accepted Manuscript published: December 12, 2017 (version 1)
  4. Version of Record published: January 31, 2018 (version 2)

Copyright

© 2017, Thompson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,519
    Page views
  • 324
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Human Biology and Medicine
    Fabian Tetzlaff et al.
    Research Article Updated
    1. Cancer Biology
    2. Cell Biology
    Jeroen Claus et al.
    Research Article