Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response

Abstract

Fumarase is distributed between two compartments of the eukaryotic cell. The enzyme catalyses the reversible conversion of fumaric to L-malic acid in mitochondria as part of the tricarboxylic acid (TCA) cycle, and in the cytosol/nucleus as part of the DNA damage response (DDR). Here we show that fumarase of the model prokaryote Bacillus subtilis (Fum-bc) is induced upon DNA damage, co-localized with the bacterial DNA and is required for the DDR. Fum-bc can substitute for both eukaryotic functions in yeast. Furthermore, we found that the fumarase dependent intracellular signaling of the B. subtilis DDR is achieved via production of L-malic acid, which affects the translation of RecN, the first protein recruited to DNA damage sites. This study provides a different evolutionary scenario in which the dual function of the ancient prokaryotic fumarase, led to its subsequent distribution into different cellular compartments in eukaryotes.

Article and author information

Author details

  1. Esti Singer

    Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yardena BH Silas

    Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Sigal Ben-Yehuda

    Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ophry Pines

    Department of Microbiology and Molecular Genetics, Hebrew University, Jerusalem, Israel
    For correspondence
    ophryp@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7126-2575

Funding

Israel Science Foundation

  • Ophry Pines

German Israeli Project Cooperation

  • Ophry Pines

CREATE Project of the National Research Foundation of Singapore

  • Ophry Pines

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Pfanner, University of Freiburg, Germany

Version history

  1. Received: August 1, 2017
  2. Accepted: November 7, 2017
  3. Accepted Manuscript published: November 15, 2017 (version 1)
  4. Version of Record published: December 1, 2017 (version 2)

Copyright

© 2017, Singer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,818
    views
  • 269
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esti Singer
  2. Yardena BH Silas
  3. Sigal Ben-Yehuda
  4. Ophry Pines
(2017)
Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response
eLife 6:e30927.
https://doi.org/10.7554/eLife.30927

Share this article

https://doi.org/10.7554/eLife.30927

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.