1. Developmental Biology
Download icon

Regulation of posterior body and epidermal morphogenesis in Zebrafish by localized Yap1 and Wwtr1

  1. David Kimelman  Is a corresponding author
  2. Natalie L Smith
  3. Jason Kuan Han Lai
  4. Didier YR Stainier
  1. University of Washington, United States
  2. Max Planck Institute for Heart and Lung Research, Germany
Research Article
  • Cited 17
  • Views 2,815
  • Annotations
Cite this article as: eLife 2017;6:e31065 doi: 10.7554/eLife.31065


The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the presumptive epidermis and notochord, and play a critical and unexpected role in posterior body extension by regulating Fibronectin assembly underneath the presumptive epidermis and surrounding the notochord. We further find that Yap1 and Wwtr1, also via Fibronectin, have an essential role in the epidermal morphogenesis necessary to form the initial dorsal and ventral fins, a process previously thought to involve bending of an epithelial sheet, but which we now show involves concerted active cell movement. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo.

Data availability

The following data sets were generated

Article and author information

Author details

  1. David Kimelman

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9261-4506
  2. Natalie L Smith

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Jason Kuan Han Lai

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026


National Institutes of Health (GM079203)

  • David Kimelman

Max Planck Society

  • Jason Kuan Han Lai
  • Didier YR Stainier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: This study was performed in strict accordance with institutional (UW and MPG) and national ethical and animal welfare guidelines. All of the animals were handled according to approved institutional animal care protocols (Permission No. B2/1068 for DS and IACUC protocol 2387-02 for DK).

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Publication history

  1. Received: August 6, 2017
  2. Accepted: December 20, 2017
  3. Accepted Manuscript published: December 28, 2017 (version 1)
  4. Version of Record published: January 18, 2018 (version 2)


© 2017, Kimelman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,815
    Page views
  • 458
  • 17

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Alessandro Bonfini et al.
    Research Article

    The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples ISC proliferation from expression of niche-derived signals but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.

    1. Developmental Biology
    2. Physics of Living Systems
    Yonghyun Song, Changbong Hyeon
    Research Article Updated

    Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the cost-effectiveness of precise morphogen profile formation in Drosophila development.