Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity

  1. Pinar S Gurel
  2. Laura Y Kim
  3. Paul V Ruijgrok
  4. Tosan Omabegho
  5. Zev Bryant
  6. Gregory M Alushin  Is a corresponding author
  1. National Heart, Blood, and Lung Institute, United States
  2. Stanford University, United States

Abstract

Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI motor domain in rigor (4.6 Å) and Mg-ADP (5.5 Å) states bound to F-actin. Comparison to the myosin IIC-F-actin rigor complex reveals an almost complete lack of conservation of residues at the actin-myosin interface despite preservation of the primary sequence regions composing it, suggesting an evolutionary path for motor specialization. Additionally, analysis of the transition from ADP to rigor provides a structural rationale for force sensitivity in this step of the mechanochemical cycle. Finally, we observe reciprocal rearrangements in actin and myosin accompanying the transition between these states, supporting a role for actin structural plasticity during force generation by myosin VI.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Pinar S Gurel

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Laura Y Kim

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul V Ruijgrok

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tosan Omabegho

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zev Bryant

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory M Alushin

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    For correspondence
    galushin@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7250-4484

Funding

W. M. Keck Foundation

  • Zev Bryant

Human Frontier Science Program (Long-Term Fellowship)

  • Paul V Ruijgrok

National Heart, Lung, and Blood Institute

  • Gregory M Alushin

Rockefeller University (Women & Science Fellowship)

  • Pinar S Gurel

National Institutes of Health (F32GM094420)

  • Tosan Omabegho

National Institutes of Health (1DP2 OD004690)

  • Zev Bryant

National Institutes of Health (5DP5OD017885)

  • Gregory M Alushin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Gurel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,337
    views
  • 719
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pinar S Gurel
  2. Laura Y Kim
  3. Paul V Ruijgrok
  4. Tosan Omabegho
  5. Zev Bryant
  6. Gregory M Alushin
(2017)
Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity
eLife 6:e31125.
https://doi.org/10.7554/eLife.31125

Share this article

https://doi.org/10.7554/eLife.31125

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.