Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity

  1. Pinar S Gurel
  2. Laura Y Kim
  3. Paul V Ruijgrok
  4. Tosan Omabegho
  5. Zev Bryant
  6. Gregory M Alushin  Is a corresponding author
  1. National Heart, Blood, and Lung Institute, United States
  2. Stanford University, United States

Abstract

Despite extensive scrutiny of the myosin superfamily, the lack of high-resolution structures of actin-bound states has prevented a complete description of its mechanochemical cycle and limited insight into how sequence and structural diversification of the motor domain gives rise to specialized functional properties. Here we present cryo-EM structures of the unique minus-end directed myosin VI motor domain in rigor (4.6 Å) and Mg-ADP (5.5 Å) states bound to F-actin. Comparison to the myosin IIC-F-actin rigor complex reveals an almost complete lack of conservation of residues at the actin-myosin interface despite preservation of the primary sequence regions composing it, suggesting an evolutionary path for motor specialization. Additionally, analysis of the transition from ADP to rigor provides a structural rationale for force sensitivity in this step of the mechanochemical cycle. Finally, we observe reciprocal rearrangements in actin and myosin accompanying the transition between these states, supporting a role for actin structural plasticity during force generation by myosin VI.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Pinar S Gurel

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Laura Y Kim

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul V Ruijgrok

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tosan Omabegho

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zev Bryant

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory M Alushin

    Cell Biology and Physiology Center, National Heart, Blood, and Lung Institute, Bethesda, United States
    For correspondence
    galushin@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7250-4484

Funding

W. M. Keck Foundation

  • Zev Bryant

Human Frontier Science Program (Long-Term Fellowship)

  • Paul V Ruijgrok

National Heart, Lung, and Blood Institute

  • Gregory M Alushin

Rockefeller University (Women & Science Fellowship)

  • Pinar S Gurel

National Institutes of Health (F32GM094420)

  • Tosan Omabegho

National Institutes of Health (1DP2 OD004690)

  • Zev Bryant

National Institutes of Health (5DP5OD017885)

  • Gregory M Alushin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Publication history

  1. Received: August 9, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 4, 2017 (version 1)
  4. Version of Record published: January 10, 2018 (version 2)

Copyright

© 2017, Gurel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,582
    Page views
  • 634
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pinar S Gurel
  2. Laura Y Kim
  3. Paul V Ruijgrok
  4. Tosan Omabegho
  5. Zev Bryant
  6. Gregory M Alushin
(2017)
Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity
eLife 6:e31125.
https://doi.org/10.7554/eLife.31125
  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Xingchen Liu et al.
    Research Article

    Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader Replication Factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC's central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC’s external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Vladislav Belyy et al.
    Research Article

    Protein folding homeostasis in the endoplasmic reticulum (ER) is regulated by a signaling network, termed the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER membrane-resident kinase/RNase that mediates signal transmission in the most evolutionarily conserved branch of the UPR. Dimerization and/or higher-order oligomerization of IRE1 are thought to be important for its activation mechanism, yet the actual oligomeric states of inactive, active, and attenuated mammalian IRE1 complexes remain unknown. We developed an automated two-color single-molecule tracking approach to dissect the oligomerization of tagged endogenous human IRE1 in live cells. In contrast to previous models, our data indicate that IRE1 exists as a constitutive homodimer at baseline and assembles into small oligomers upon ER stress. We demonstrate that the formation of inactive dimers and stress-dependent oligomers is fully governed by IRE1’s lumenal domain. Phosphorylation of IRE1’s kinase domain occurs more slowly than oligomerization and is retained after oligomers disassemble back into dimers. Our findings suggest that assembly of IRE1 dimers into larger oligomers specifically enables trans-autophosphorylation, which in turn drives IRE1’s RNase activity.