1. Neuroscience
Download icon

Fast and accurate edge orientation processing during object manipulation

  1. J Andrew Pruszynski  Is a corresponding author
  2. J Randall Flanagan
  3. Roland S Johansson
  1. Western University, Canada
  2. Queen's University, Canada
  3. Umea University, Sweden
Research Article
  • Cited 13
  • Views 2,414
  • Annotations
Cite this article as: eLife 2018;7:e31200 doi: 10.7554/eLife.31200


Quickly and accurately extracting information about a touched object's orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system's capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system.

Article and author information

Author details

  1. J Andrew Pruszynski

    Department of Physiology and Pharmacology, Western University, London, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0786-0081
  2. J Randall Flanagan

    Centre for Neuroscience Studies, Queen's University, Kingston, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Roland S Johansson

    Department of Integrative Medical Biology, Umea University, Umea, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3288-8326


Canadian Institutes of Health Research (Foundation Grant 3531979)

  • J Andrew Pruszynski

Vetenskapsrådet (Project 22209)

  • J Andrew Pruszynski

Canadian Institutes of Health Research (OOGP 82837)

  • J Randall Flanagan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: Twenty healthy people volunteered for these experiments. All participants provided written informed consent in accordance with the Declaration of Helsinki. The ethics committee at Umea University approved the study.

Reviewing Editor

  1. Timothy Verstynen, Carnegie Mellon University, United States

Publication history

  1. Received: August 12, 2017
  2. Accepted: March 29, 2018
  3. Accepted Manuscript published: April 3, 2018 (version 1)
  4. Version of Record published: April 27, 2018 (version 2)


© 2018, Pruszynski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,414
    Page views
  • 267
  • 13

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Alessia Caramello et al.
    Research Article Updated

    During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration toward the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.

    1. Genetics and Genomics
    2. Neuroscience
    Nipun S Basrur et al.
    Research Article Updated

    The Aedesaegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.