Abstract

Membrane-assisted amyloid formation is implicated in human diseases, and many of the aggregating species accelerate amyloid formation and induce cell death. While structures of membrane-associated intermediates would provide tremendous insights into the pathology and aid in the design of compounds to potentially treat the diseases, it has not been feasible to overcome the challenges posed by the cell membrane. Here we use NMR experimental constraints to solve the structure of a type-2 diabetes related human islet amyloid polypeptide intermediate stabilized in nanodiscs. ROSETTA and MD simulations resulted in a unique b-strand structure distinct from the conventional amyloid b-hairpin and revealed that the nucleating NFGAIL region remains flexible and accessible within this isolated intermediate, suggesting a mechanism by which membrane-associated aggregation may be propagated. The ability of nanodiscs to trap amyloid intermediates as demonstrated could become one of the most powerful approaches to dissect the complicated misfolding pathways of protein aggregation.

Article and author information

Author details

  1. Diana C Rodriguez Camargo

    Institute for Advanced Study, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3522-4859
  2. Kyle J Korshavn

    Program in Biophysics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Jussupow

    Institute for Advanced Study, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Kolio Raltchev

    Center for Integrated Protein Science Munich, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Goricanec

    Center for Integrated Protein Science Munich, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus Fleisch

    Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Riddhiman Sarkar

    Center for Integrated Protein Science Munich, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai Xue

    Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michaela Aichler

    Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gabriele Mettenleiter

    Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Axel Karl Walch

    Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Carlo Camilloni

    Institute for Advanced Study, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9923-8590
  13. Franz Hagn

    Institute for Advanced Study, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Bernd Reif

    Center for Integrated Protein Science Munich, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Ayyalusamy Ramamoorthy

    Institute for Advanced Study, Technische Universität München, Garching, Germany
    For correspondence
    ramamoor@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1964-1900

Funding

National Institutes of Health (AG048934)

  • Ayyalusamy Ramamoorthy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Rodriguez Camargo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,927
    views
  • 600
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana C Rodriguez Camargo
  2. Kyle J Korshavn
  3. Alexander Jussupow
  4. Kolio Raltchev
  5. David Goricanec
  6. Markus Fleisch
  7. Riddhiman Sarkar
  8. Kai Xue
  9. Michaela Aichler
  10. Gabriele Mettenleiter
  11. Axel Karl Walch
  12. Carlo Camilloni
  13. Franz Hagn
  14. Bernd Reif
  15. Ayyalusamy Ramamoorthy
(2017)
Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate
eLife 6:e31226.
https://doi.org/10.7554/eLife.31226

Share this article

https://doi.org/10.7554/eLife.31226

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.