1. Structural Biology and Molecular Biophysics
Download icon

Molecular determinants of permeation in a fluoride-specific ion channel

  1. Nicholas B Last
  2. Senmiao Sun
  3. Minh C Pham
  4. Christopher Miller  Is a corresponding author
  1. Howard Hughes Medical Institute, Brandeis University, United States
Research Article
  • Cited 10
  • Views 1,761
  • Annotations
Cite this article as: eLife 2017;6:e31259 doi: 10.7554/eLife.31259

Abstract

Fluoride ion channels of the Fluc family combat toxicity arising from accumulation of environmental F-. Although crystal structures are known, the densely packed pore region has precluded delineation of the ion pathway. Here we chart out the Fluc pore and characterize its chemical requirements for transport. A ladder of H-bond donating residues creates a 'polar track' demarking the ion-conduction pathway. Surprisingly, while track polarity is well conserved, polarity is nonetheless functionally dispensable at several positions. A threonine at one end of the pore engages in vital interactions through its β-branched methyl group. Two critical central phenylalanines that directly coordinate F- through a quadrupolar-ion interaction cannot be functionally substituted by aromatic, non-polar, or polar sidechains. The only functional replacement is methionine, which coordinates F- through its partially positive γ-methylene in mimicry of phenylalanine's quadrupolar interaction. These results demonstrate the unusual chemical requirements for selectively transporting the strongly H-bonding F- anion.

Article and author information

Author details

  1. Nicholas B Last

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Senmiao Sun

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Minh C Pham

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Miller

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    For correspondence
    cmiller@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0273-8653

Funding

Howard Hughes Medical Institute

  • Nicholas B Last
  • Christopher Miller

National Institute of General Medical Sciences (NIH GM107023)

  • Senmiao Sun
  • Minh C Pham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Publication history

  1. Received: August 16, 2017
  2. Accepted: September 26, 2017
  3. Accepted Manuscript published: September 27, 2017 (version 1)
  4. Version of Record published: October 11, 2017 (version 2)

Copyright

© 2017, Last et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,761
    Page views
  • 309
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Michael F Priest et al.
    Research Article Updated

    Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole–Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP).

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yongjian Huang et al.
    Research Article

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.