Metformin extends C. elegans lifespan through lysosomal pathway

Abstract

Metformin, a widely used first-line drug for treatment of type 2 diabetes (T2D), has been shown to extend lifespan and delay the onset of age-related diseases. However, its primary locus of action remains unclear. Using a pure in vitro reconstitution system, we demonstrate that metformin acts through the v-ATPase-Ragulator lysosomal pathway to coordinate mTORC1 and AMPK, two hubs governing metabolic programs. We further show in Caenorhabditis elegans that both v-ATPase-mediated TORC1 inhibition and v-ATPase-AXIN/LKB1-mediated AMPK activation contribute to the lifespan extension effect of metformin. Elucidating the molecular mechanism of metformin regulated healthspan extension will boost its therapeutic application in the treatment of human aging and age-related diseases.

Article and author information

Author details

  1. Jie Chen

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuhui Ou

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Li

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shumei Hu

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Li-Wa Shao

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying Liu

    Institute of Molecular Medicine, Peking University, Beijing, China
    For correspondence
    ying.liu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3328-026X

Funding

National Natural Science Foundation of China (31422033)

  • Ying Liu

Ministry of Science and Technology of the People's Republic of China (2013CB910104)

  • Ying Liu

National Natural Science Foundation of China (31471381)

  • Ying Liu

Young thousand Talents Program of China

  • Ying Liu

Peking-Tsinghua Center for Life Sciences

  • Ying Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,159
    views
  • 1,583
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Chen
  2. Yuhui Ou
  3. Yi Li
  4. Shumei Hu
  5. Li-Wa Shao
  6. Ying Liu
(2017)
Metformin extends C. elegans lifespan through lysosomal pathway
eLife 6:e31268.
https://doi.org/10.7554/eLife.31268

Share this article

https://doi.org/10.7554/eLife.31268

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.