Covert shift of attention modulates the value encoding in the orbitofrontal cortex

  1. Yang Xie
  2. Chechang Nie
  3. Tianming Yang  Is a corresponding author
  1. Institute of Neuroscience, Chinese Academy of Sciences, China

Abstract

During value-based decision making, we often evaluate the value of each option sequentially by shifting our attention, even when the options are presented simultaneously. The orbitofrontal cortex (OFC) has been suggested to encode value during value-based decision making. Yet it is not known how its activity is modulated by attention shifts. We investigated this question by employing a passive viewing task that allowed us to disentangle effects of attention, value, choice and eye movement. We found that the attention modulated OFC activity through a winner-take-all mechanism. When we attracted the monkeys' attention covertly, the OFC neuronal activity reflected the reward value of the newly attended cue. The shift of attention could be explained by a normalization model. Our results strongly argue for the hypothesis that the OFC neuronal activity represents the value of the attended item. They provide important insights toward understanding the OFC's role in value-based decision making.

Article and author information

Author details

  1. Yang Xie

    Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chechang Nie

    Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tianming Yang

    Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    tyang@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6976-9246

Funding

Chinese Academy of Sciences (Hundreds of Talents Program)

  • Tianming Yang

Science and Technology Commission of Shanghai Municipality (15JC1400104)

  • Tianming Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care Committee of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (ER-SIBS-221501P). All surgeries were performed under aseptic conditions. Monkeys were sedated with ketamine hydrochloride (5-15 mg/kg, i.m.), and anesthesia was then induced and maintained with isoflurane gas (1.5-2%, to effect). Every effort was made to minimize suffering.

Reviewing Editor

  1. Joni Wallis, University of California, Berkeley, United States

Publication history

  1. Received: August 24, 2017
  2. Accepted: March 12, 2018
  3. Accepted Manuscript published: March 13, 2018 (version 1)
  4. Version of Record published: March 27, 2018 (version 2)

Copyright

© 2018, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,933
    Page views
  • 331
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Xie
  2. Chechang Nie
  3. Tianming Yang
(2018)
Covert shift of attention modulates the value encoding in the orbitofrontal cortex
eLife 7:e31507.
https://doi.org/10.7554/eLife.31507

Further reading

    1. Neuroscience
    Nikoloz Sirmpilatze et al.
    Research Article

    During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded—predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.

    1. Neuroscience
    Maria Ribeiro, Miguel Castelo-Branco
    Research Article

    In humans, ageing is characterized by decreased brain signal variability and increased behavioral variability. To understand how reduced brain variability segregates with increased behavioral variability, we investigated the association between reaction time variability, evoked brain responses and ongoing brain signal dynamics, in young (N=36) and older adults (N=39). We studied the electroencephalogram (EEG) and pupil size fluctuations to characterize the cortical and arousal responses elicited by a cued go/no-go task. Evoked responses were strongly modulated by slow (<2 Hz) fluctuations of the ongoing signals, which presented reduced power in the older participants. Although variability of the evoked responses was lower in the older participants, once we adjusted for the effect of the ongoing signal fluctuations, evoked responses were equally variable in both groups. Moreover, the modulation of the evoked responses caused by the ongoing signal fluctuations had no impact on reaction time, thereby explaining why although ongoing brain signal variability is decreased in older individuals, behavioral variability is not. Finally, we showed that adjusting for the effect of the ongoing signal was critical to unmask the link between neural responses and behavior as well as the link between task-related evoked EEG and pupil responses.