Sensory cortex is optimised for prediction of future input

  1. Yosef Singer
  2. Yayoi Teramoto
  3. Ben DB Willmore
  4. Andrew J King
  5. Jan W H Schnupp
  6. Nicol S Harper  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. City University of Hong Kong, Hong Kong

Abstract

Neurons in sensory cortex are tuned to diverse features in natural scenes. But what determines which features neurons become selective to? Here we explore the idea that neuronal selectivity is optimised to represent features in the recent sensory past that best predict immediate future inputs. We tested this hypothesis using simple feedforward neural networks, which were trained to predict the next few video or audio frames in clips of natural scenes. The networks developed receptive fields that closely matched those of real cortical neurons in different mammalian species, including the oriented spatial tuning of primary visual cortex, the frequency selectivity of primary auditory cortex and, most notably, their temporal tuning properties. Furthermore, the better a network predicted future inputs the more closely its receptive fields resembled those in the brain. This suggests that sensory processing is optimised to extract those features with the most capacity to predict future input.

Data availability

All custom code used in this study was implemented in MATLAB and Python. We have uploaded the code to a public Github repository. The raw auditory experimental data is available at  https://osf.io/ayw2p/. The movies and sounds used for training the models are all publicly available at the websites detailed in the Methods.

The following data sets were generated
    1. Jan Schnupp
    (2016) NetworkReceptiveFields
    Available at the Open Science Framework.

Article and author information

Author details

  1. Yosef Singer

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Yayoi Teramoto

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3419-0351
  3. Ben DB Willmore

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Andrew J King, Senior Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5180-7179
  5. Jan W H Schnupp

    Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  6. Nicol S Harper

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicol.harper@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7851-4840

Funding

Clarendon Fund

  • Yosef Singer
  • Yayoi Teramoto

University Of Oxford

  • Nicol S Harper

Action on Hearing Loss (PA07)

  • Nicol S Harper

Biotechnology and Biological Sciences Research Council (BB/H008608/1)

  • Nicol S Harper

Wellcome (WT10525/Z/14/Z)

  • Yayoi Teramoto

Wellcome (WT076508AIA)

  • Ben DB Willmore

Wellcome (WT108369/Z/2015/Z)

  • Ben DB Willmore

Wellcome (WT076508AIA)

  • Andrew J King

Wellcome (WT108369/Z/2015/Z)

  • Andrew J King

Wellcome (WT082692)

  • Nicol S Harper

Wellcome (WT076508AIA)

  • Nicol S Harper

Wellcome (WT108369/Z/2015/Z)

  • Nicol S Harper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Auditory RFs of neurons were recorded in the primary auditory cortex (A1) and anterior auditory field (AAF) of 5 pigmented ferrets of both sexes (all > 6 months of age) and used as a basis for comparison with the RFs of model units trained on auditory stimuli. These recordings were performed under license from the UK Home Office and were approved by the University of Oxford Committee on Animal Care and Ethical Review. Full details of the recording methods are described in earlier studies [45,90]. Briefly, we induced general anaesthesia with a single intramuscular dose of medetomidine (0.022 mg · kg−1 · h−1) and ketamine (5 mg · kg−1 · h−1), which was then maintained with a continuous intravenous infusion of medetomidine and ketamine in saline. Oxygen was supplemented with a ventilator, and we monitored vital signs (body temperature, end-tidal CO2, and the electrocardiogram) throughout the experiment. The temporal muscles were retracted, a head holder was secured to the skull surface, and a craniotomy and a durotomy were made over the auditory cortex. Extracellular recordings were made using silicon probe electrodes (Neuronexus Technologies) and acoustic stimuli were presented via Panasonic RPHV27 earphones, which were coupled to otoscope specula that were inserted into each ear canal, and driven by Tucker-Davis Technologies System III hardware (48 kHz sample rate).

Copyright

© 2018, Singer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,858
    views
  • 1,157
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yosef Singer
  2. Yayoi Teramoto
  3. Ben DB Willmore
  4. Andrew J King
  5. Jan W H Schnupp
  6. Nicol S Harper
(2018)
Sensory cortex is optimised for prediction of future input
eLife 7:e31557.
https://doi.org/10.7554/eLife.31557

Share this article

https://doi.org/10.7554/eLife.31557

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.