1. Neuroscience
Download icon

Sensory cortex is optimised for prediction of future input

  1. Yosef Singer
  2. Yayoi Teramoto
  3. Ben DB Willmore
  4. Andrew J King
  5. Jan W H Schnupp
  6. Nicol S Harper  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. City University of Hong Kong, Hong Kong
Research Article
  • Cited 11
  • Views 6,151
  • Annotations
Cite this article as: eLife 2018;7:e31557 doi: 10.7554/eLife.31557

Abstract

Neurons in sensory cortex are tuned to diverse features in natural scenes. But what determines which features neurons become selective to? Here we explore the idea that neuronal selectivity is optimised to represent features in the recent sensory past that best predict immediate future inputs. We tested this hypothesis using simple feedforward neural networks, which were trained to predict the next few video or audio frames in clips of natural scenes. The networks developed receptive fields that closely matched those of real cortical neurons in different mammalian species, including the oriented spatial tuning of primary visual cortex, the frequency selectivity of primary auditory cortex and, most notably, their temporal tuning properties. Furthermore, the better a network predicted future inputs the more closely its receptive fields resembled those in the brain. This suggests that sensory processing is optimised to extract those features with the most capacity to predict future input.

Article and author information

Author details

  1. Yosef Singer

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Yayoi Teramoto

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3419-0351
  3. Ben DB Willmore

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Andrew J King, Senior Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5180-7179
  5. Jan W H Schnupp

    Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  6. Nicol S Harper

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicol.harper@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7851-4840

Funding

Clarendon Fund

  • Yosef Singer
  • Yayoi Teramoto

University Of Oxford

  • Nicol S Harper

Action on Hearing Loss (PA07)

  • Nicol S Harper

Biotechnology and Biological Sciences Research Council (BB/H008608/1)

  • Nicol S Harper

Wellcome (WT10525/Z/14/Z)

  • Yayoi Teramoto

Wellcome (WT076508AIA)

  • Ben DB Willmore

Wellcome (WT108369/Z/2015/Z)

  • Ben DB Willmore

Wellcome (WT076508AIA)

  • Andrew J King

Wellcome (WT108369/Z/2015/Z)

  • Andrew J King

Wellcome (WT082692)

  • Nicol S Harper

Wellcome (WT076508AIA)

  • Nicol S Harper

Wellcome (WT108369/Z/2015/Z)

  • Nicol S Harper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Auditory RFs of neurons were recorded in the primary auditory cortex (A1) and anterior auditory field (AAF) of 5 pigmented ferrets of both sexes (all > 6 months of age) and used as a basis for comparison with the RFs of model units trained on auditory stimuli. These recordings were performed under license from the UK Home Office and were approved by the University of Oxford Committee on Animal Care and Ethical Review. Full details of the recording methods are described in earlier studies [45,90]. Briefly, we induced general anaesthesia with a single intramuscular dose of medetomidine (0.022 mg · kg−1 · h−1) and ketamine (5 mg · kg−1 · h−1), which was then maintained with a continuous intravenous infusion of medetomidine and ketamine in saline. Oxygen was supplemented with a ventilator, and we monitored vital signs (body temperature, end-tidal CO2, and the electrocardiogram) throughout the experiment. The temporal muscles were retracted, a head holder was secured to the skull surface, and a craniotomy and a durotomy were made over the auditory cortex. Extracellular recordings were made using silicon probe electrodes (Neuronexus Technologies) and acoustic stimuli were presented via Panasonic RPHV27 earphones, which were coupled to otoscope specula that were inserted into each ear canal, and driven by Tucker-Davis Technologies System III hardware (48 kHz sample rate).

Reviewing Editor

  1. Jack L Gallant, University of California, Berkeley, United States

Publication history

  1. Received: October 4, 2017
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: June 18, 2018 (version 1)
  4. Accepted Manuscript updated: June 22, 2018 (version 2)
  5. Version of Record published: August 24, 2018 (version 3)
  6. Version of Record updated: September 18, 2018 (version 4)

Copyright

© 2018, Singer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,151
    Page views
  • 951
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Dmitri A Rusakov et al.
    Research Article Updated

    Dendritic integration of synaptic inputs involves their increased electrotonic attenuation at distal dendrites, which can be counterbalanced by the increased synaptic receptor density. However, during network activity, the influence of individual synapses depends on their release fidelity, the dendritic distribution of which remains poorly understood. Here, we employed classical optical quantal analyses and a genetically encoded optical glutamate sensor in acute hippocampal slices of rats and mice to monitor glutamate release at CA3-CA1 synapses. We find that their release probability increases with greater distances from the soma. Similar-fidelity synapses tend to group together, whereas release probability shows no trends regarding the branch ends. Simulations with a realistic CA1 pyramidal cell hosting stochastic synapses suggest that the observed trends boost signal transfer fidelity, particularly at higher input frequencies. Because high-frequency bursting has been associated with learning, the release probability pattern we have found may play a key role in memory trace formation.

    1. Neuroscience
    Masahito Yamagata et al.
    Research Article Updated

    Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates – photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.