Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding

  1. Manuel Alonso Y Adell
  2. Simona M Migliano
  3. Srigokul Upadhyayula
  4. Yury S Bykov
  5. Simon Sprenger
  6. Mehrshad Pakdel
  7. Georg F Vogel
  8. Gloria Jih
  9. Wesley Skillern
  10. Reza Behrouzi
  11. Markus Babst
  12. Oliver Schmidt
  13. Michael W Hess
  14. John AG Briggs
  15. Tomas Kirchhausen  Is a corresponding author
  16. David Teis  Is a corresponding author
  1. Medical University of Innsbruck, Austria
  2. Harvard Medical School, United States
  3. European Molecular Biology Laboratory, Germany
  4. Boston Children's Hospital, United States
  5. University of Utah, United States

Abstract

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 second lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Manuel Alonso Y Adell

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Simona M Migliano

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Srigokul Upadhyayula

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yury S Bykov

    Structural and Computational Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2959-4108
  5. Simon Sprenger

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Mehrshad Pakdel

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Georg F Vogel

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Gloria Jih

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wesley Skillern

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Reza Behrouzi

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3064-9743
  11. Markus Babst

    Center for Cell and Genome Science, Department of Biology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Oliver Schmidt

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  13. Michael W Hess

    Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  14. John AG Briggs

    Structural and Computational Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Tomas Kirchhausen

    Department of Cell Biology, Harvard Medical School, Boston, United States
    For correspondence
    kirchhau@crystal.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  16. David Teis

    Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    david.teis@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8181-0253

Funding

National Institutes of Health (GM075252)

  • Tomas Kirchhausen

Austrian Science Fund (Y444-B12)

  • David Teis

Austrian Science Fund (P30263)

  • David Teis

Austrian Science Fund (W1101-B18)

  • David Teis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Adell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,031
    views
  • 1,235
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manuel Alonso Y Adell
  2. Simona M Migliano
  3. Srigokul Upadhyayula
  4. Yury S Bykov
  5. Simon Sprenger
  6. Mehrshad Pakdel
  7. Georg F Vogel
  8. Gloria Jih
  9. Wesley Skillern
  10. Reza Behrouzi
  11. Markus Babst
  12. Oliver Schmidt
  13. Michael W Hess
  14. John AG Briggs
  15. Tomas Kirchhausen
  16. David Teis
(2017)
Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding
eLife 6:e31652.
https://doi.org/10.7554/eLife.31652

Share this article

https://doi.org/10.7554/eLife.31652

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.