Abstract

Hedgehog ligands activate an evolutionarily conserved signaling pathway that provides instructional cues during tissue morphogenesis, and when corrupted, contributes to developmental disorders and cancer. The transmembrane protein Dispatched is an essential component of the machinery that deploys Hedgehog family ligands from producing cells, and is absolutely required for signaling to long-range targets. Despite this crucial role, regulatory mechanisms controlling Dispatched activity remain largely undefined. Herein we reveal vertebrate Dispatched is activated by proprotein convertase-mediated cleavage at a conserved processing site in its first extracellular loop. Dispatched processing occurs at the cell surface to instruct its membrane re-localization in polarized epithelial cells. Cleavage site mutation alters Dispatched membrane trafficking and reduces ligand release, leading to compromised pathway activity in vivo. As such, convertase-mediated cleavage is required for Dispatched maturation and functional competency in Hedgehog ligand-producing cells.

Article and author information

Author details

  1. Daniel P Stewart

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Suresh Marada

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. William J Bodeen

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0557-4826
  4. Ashley Truong

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sadie Miki Sakurada

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tanushree Pandit

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shondra M Pruett-Miller

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stacey K Ogden

    Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
    For correspondence
    stacey.ogden@stjude.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8991-3065

Funding

National Institute of General Medical Sciences (R01GM114049)

  • Stacey K Ogden

St. Jude Children's Research Hospital

  • Stacey K Ogden

National Cancer Institute (P30CA021765)

  • Stacey K Ogden

National Institute of General Medical Sciences (R35GM122546)

  • Stacey K Ogden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Stewart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,807
    views
  • 431
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel P Stewart
  2. Suresh Marada
  3. William J Bodeen
  4. Ashley Truong
  5. Sadie Miki Sakurada
  6. Tanushree Pandit
  7. Shondra M Pruett-Miller
  8. Stacey K Ogden
(2018)
Cleavage activates Dispatched for Sonic Hedgehog ligand release
eLife 7:e31678.
https://doi.org/10.7554/eLife.31678

Share this article

https://doi.org/10.7554/eLife.31678

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.