1. Developmental Biology
  2. Neuroscience
Download icon

Two receptor tyrosine phosphatases dictate the depth of axonal stabilizing layer in the visual system

  1. Satoko Hakeda-Suzuki  Is a corresponding author
  2. Hiroki Takechi
  3. Hinata Kawamura
  4. Takashi Suzuki  Is a corresponding author
  1. Tokyo Institute of Technology, Japan
Research Article
  • Cited 4
  • Views 1,300
  • Annotations
Cite this article as: eLife 2017;6:e31812 doi: 10.7554/eLife.31812

Abstract

Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer specific wiring.

Article and author information

Author details

  1. Satoko Hakeda-Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    hakeda@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Hiroki Takechi

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hinata Kawamura

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Takashi Suzuki

    School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    suzukit@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9093-2562

Funding

Japan Society for the Promotion of Science (Grant-in-Aid for JSPS Research Fellow)

  • Satoko Hakeda-Suzuki

Japan Society for the Promotion of Science (KAKENHI 26440119)

  • Satoko Hakeda-Suzuki

Japan Society for the Promotion of Science (KAKENHI 26291047)

  • Takashi Suzuki

Japan Society for the Promotion of Science (Grant-in Scientific Research on Innovation Areas 16H06457)

  • Takashi Suzuki

Toray Industries

  • Takashi Suzuki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: September 7, 2017
  2. Accepted: November 3, 2017
  3. Accepted Manuscript published: November 8, 2017 (version 1)
  4. Version of Record published: November 13, 2017 (version 2)

Copyright

© 2017, Hakeda-Suzuki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,300
    Page views
  • 226
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Bjoern Gaertner et al.
    Research Article

    Long noncoding RNAs (lncRNAs) are a heterogenous group of RNAs, which can encode small proteins. The extent to which developmentally regulated lncRNAs are translated and whether the produced microproteins are relevant for human development is unknown. Using a human embryonic stem cell (hESC)-based pancreatic differentiation system, we show that many lncRNAs in direct vicinity of lineage-determining transcription factors (TFs) are dynamically regulated, predominantly cytosolic, and highly translated. We genetically ablated ten such lncRNAs, most of them translated, and found that nine are dispensable for pancreatic endocrine cell development. However, deletion of LINC00261 diminishes insulin+ cells, in a manner independent of the nearby TF FOXA2. One-by-one deletion of each of LINC00261's open reading frames suggests that the RNA, rather than the produced microproteins, is required for endocrine development. Our work highlights extensive translation of lncRNAs during hESC pancreatic differentiation and provides a blueprint for dissection of their coding and noncoding roles.

    1. Developmental Biology
    2. Physics of Living Systems
    Lokesh G Pimpale et al.
    Research Article Updated

    Proper positioning of cells is essential for many aspects of development. Daughter cell positions can be specified via orienting the cell division axis during cytokinesis. Rotatory actomyosin flows during division have been implied in specifying and reorienting the cell division axis, but how general such reorientation events are, and how they are controlled, remains unclear. We followed the first nine divisions of Caenorhabditis elegans embryo development and demonstrate that chiral counter-rotating flows arise systematically in early AB lineage, but not in early P/EMS lineage cell divisions. Combining our experiments with thin film active chiral fluid theory we identify a mechanism by which chiral counter-rotating actomyosin flows arise in the AB lineage only, and show that they drive lineage-specific spindle skew and cell reorientation events. In conclusion, our work sheds light on the physical processes that underlie chiral morphogenesis in early development.