1. Computational and Systems Biology
  2. Chromosomes and Gene Expression
Download icon

Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria

  1. Joseph Robert Piechura
  2. Kapil Amarnath
  3. Erin K O'Shea  Is a corresponding author
  1. Harvard University, United States
Research Article
  • Cited 13
  • Views 3,250
  • Annotations
Cite this article as: eLife 2017;6:e32032 doi: 10.7554/eLife.32032

Abstract

The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joseph Robert Piechura

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5349-4567
  2. Kapil Amarnath

    FAS Center for Systems Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2589-9684
  3. Erin K O'Shea

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    osheae@hhmi.org
    Competing interests
    Erin K O'Shea, President of Howard Hughes Medical Institute, one of the three founding funders of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2649-1018

Funding

Howard Hughes Medical Institute

  • Erin K O'Shea

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: September 15, 2017
  2. Accepted: December 13, 2017
  3. Accepted Manuscript published: December 14, 2017 (version 1)
  4. Accepted Manuscript updated: December 15, 2017 (version 2)
  5. Version of Record published: January 25, 2018 (version 3)

Copyright

© 2017, Piechura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,250
    Page views
  • 440
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Christopher P Mancuso et al.
    Research Article Updated

    Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel ‘niche flip’ mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.

    1. Computational and Systems Biology
    Michael S Lauer, Deepshikha Roychowdhury
    Research Article Updated

    Previous reports have described worsening inequalities of National Institutes of Health (NIH) funding. We analyzed Research Project Grant data through the end of Fiscal Year 2020, confirming worsening inequalities beginning at the time of the NIH budget doubling (1998–2003), while finding that trends in recent years have reversed for both investigators and institutions, but only to a modest degree. We also find that career-stage trends have stabilized, with equivalent proportions of early-, mid-, and late-career investigators funded from 2017 to 2020. The fraction of women among funded PIs continues to increase, but they are still not at parity. Analyses of funding inequalities show that inequalities for investigators, and to a lesser degree for institutions, have consistently been greater within groups (i.e. within groups by career stage, gender, race, and degree) than between groups.