Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

  1. Samuel T Coradetti
  2. Dominic Pinel
  3. Gina Geiselman
  4. Masakazu Ito
  5. Stephen Mondo
  6. Morgann C Reilly
  7. Ya-Fang Cheng
  8. Stefan Bauer
  9. Igor Grigoriev
  10. John M Gladden
  11. Blake A Simmons
  12. Rachel Brem
  13. Adam P Arkin  Is a corresponding author
  14. Jeffrey M Skerker  Is a corresponding author
  1. The Buck Institute for Research on Aging, United States
  2. University of California, Berkeley, United States
  3. United States Department of Energy Joint Genome Institute, United States
  4. Joint BioEnergy Institute, United States

Abstract

The basidiomycete yeast Rhodosporidium toruloides (a.k.a. Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Samuel T Coradetti

    The Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominic Pinel

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gina Geiselman

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Masakazu Ito

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen Mondo

    United States Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Morgann C Reilly

    Joint BioEnergy Institute, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ya-Fang Cheng

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Bauer

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Igor Grigoriev

    United States Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. John M Gladden

    Joint BioEnergy Institute, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6985-2485
  11. Blake A Simmons

    Joint BioEnergy Institute, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rachel Brem

    The Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Adam P Arkin

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    aparkin@lbl.gov
    Competing interests
    The authors declare that no competing interests exist.
  14. Jeffrey M Skerker

    Energy Biosciences Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    SKERKER@BERKELEY.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2653-1566

Funding

Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-SC-0012527)

  • Samuel T Coradetti
  • Dominic Pinel
  • Gina Geiselman
  • Masakazu Ito
  • Ya-Fang Cheng
  • Stefan Bauer
  • Rachel Brem
  • Adam P Arkin
  • Jeffrey M Skerker

University of California Berkeley (OO1605)

  • Dominic Pinel
  • Adam P Arkin
  • Jeffrey M Skerker

Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-AC02-05CH11231)

  • Stephen Mondo
  • Igor Grigoriev
  • John M Gladden
  • Blake A Simmons

University of California Berkeley (OO6J01)

  • Dominic Pinel
  • Adam P Arkin
  • Jeffrey M Skerker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,718
    views
  • 1,010
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel T Coradetti
  2. Dominic Pinel
  3. Gina Geiselman
  4. Masakazu Ito
  5. Stephen Mondo
  6. Morgann C Reilly
  7. Ya-Fang Cheng
  8. Stefan Bauer
  9. Igor Grigoriev
  10. John M Gladden
  11. Blake A Simmons
  12. Rachel Brem
  13. Adam P Arkin
  14. Jeffrey M Skerker
(2018)
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
eLife 7:e32110.
https://doi.org/10.7554/eLife.32110

Share this article

https://doi.org/10.7554/eLife.32110

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.