Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria

  1. FoSheng Hsu
  2. Stephanie Spannl
  3. Charles Ferguson
  4. Anthony A Hyman
  5. Robert G Parton
  6. Marino Zerial  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. University of Queensland, Australia

Abstract

Mitochondrial stress response is essential for cell survival, and damaged mitochondria are a hallmark of neurodegenerative diseases. Thus, it is fundamental to understand how mitochondria relay information within the cell. Here, by investigating mitochondrial-endosomal contact sites we made the surprising observation that the small GTPase Rab5 translocates from early endosomes to mitochondria upon oxidative stress. This process is reversible and accompanied by an increase in Rab5-positive endosomes in contact with mitochondria. Interestingly, activation of Rab5 on mitochondria depends on the Rab5-GEF ALS2/Alsin, encoded by a gene mutated in amyotrophic lateral sclerosis (ALS). Alsin-deficient human induced pluripotent stem cell-derived spinal motor neurons are defective in relocating Rab5 to mitochondria and display increased susceptibility to oxidative stress. These findings define a novel pathway whereby Alsin catalyzes the assembly of the Rab5 endocytic machinery on mitochondria. Defects in stress-sensing by endosomes could be crucial for mitochondrial quality control during the onset of ALS.

Article and author information

Author details

  1. FoSheng Hsu

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Stephanie Spannl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Charles Ferguson

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
  4. Anthony A Hyman

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Anthony A Hyman, Reviewing editor, eLife.
  5. Robert G Parton

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7494-5248
  6. Marino Zerial

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    zerial@mpi-cbg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7490-4235

Funding

Human Frontier Science Program

  • FoSheng Hsu

Max-Planck-Gesellschaft (Open-access funding)

  • Marino Zerial

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Margaret S. Robinson, University of Cambridge, United Kingdom

Publication history

  1. Received: September 25, 2017
  2. Accepted: February 20, 2018
  3. Accepted Manuscript published: February 22, 2018 (version 1)
  4. Version of Record published: March 12, 2018 (version 2)
  5. Version of Record updated: August 7, 2018 (version 3)

Copyright

© 2018, Hsu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,646
    Page views
  • 1,013
    Downloads
  • 50
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. FoSheng Hsu
  2. Stephanie Spannl
  3. Charles Ferguson
  4. Anthony A Hyman
  5. Robert G Parton
  6. Marino Zerial
(2018)
Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria
eLife 7:e32282.
https://doi.org/10.7554/eLife.32282

Further reading

    1. Cell Biology
    Sandipan Dasgupta, Daniella Y Dayagi ... Jeffrey E Gerst
    Research Article

    Full-length mRNAs transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the 'transferome') is unknown. Here, we analyzed the transferome in an in vitro human-mouse cell co-culture model using RNA-sequencing. We found that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells. Typically, <1% of endogenous mRNAs undergo transfer. Non-selective, expression-dependent RNA transfer was further validated using synthetic reporters. RNA transfer appears contact-dependent via TNTs, as exemplified for several mRNAs. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.

    1. Cell Biology
    Jini Sugatha, Amulya Priya ... Sunando Datta
    Research Article Updated

    Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.