An incoherent feedforward loop facilitates adaptive tuning of gene expression

  1. Jungeui Hong
  2. Nathan Brandt
  3. Farah Abdual-Rahman
  4. Ally W H Yang
  5. Timothy R Hughes
  6. David Gresham  Is a corresponding author
  1. New York University, United States
  2. University of Toronto, Canada

Abstract

We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression.

Article and author information

Author details

  1. Jungeui Hong

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathan Brandt

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Farah Abdual-Rahman

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ally W H Yang

    Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Timothy R Hughes

    Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. David Gresham

    Department of Biology, New York University, New York, United States
    For correspondence
    dgresham@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4028-0364

Funding

National Science Foundation (MCB1244219)

  • David Gresham

National Institutes of Health (R01GM107466)

  • David Gresham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,740
    views
  • 548
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jungeui Hong
  2. Nathan Brandt
  3. Farah Abdual-Rahman
  4. Ally W H Yang
  5. Timothy R Hughes
  6. David Gresham
(2018)
An incoherent feedforward loop facilitates adaptive tuning of gene expression
eLife 7:e32323.
https://doi.org/10.7554/eLife.32323

Share this article

https://doi.org/10.7554/eLife.32323

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.