A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu  Is a corresponding author
  13. Pan Zheng  Is a corresponding author
  1. Children's National Medical Center, United States
  2. University of Michigan Medical School, United States
  3. University of Virginia, United States
  4. University of Basel, Switzerland
  5. Institute of Biophysics, Chinese Academy of Sciences, China

Abstract

Adaptive autoimmunity is restrained by controlling population sizes and pathogenicity of harmful clones, while innate destruction is controlled at effector phase. We report here that deletion of Rptor in mouse hematopoietic stem/progenitor cells causes self-destructive innate immunity by massively increasing the population of previously uncharacterized innate myelolymphoblastoid effector cells (IMLECs). Mouse IMLECs are CD3-B220-NK1.1-Ter119- CD11clow/-CD115-F4/80low/-Gr-1- CD11b+, but surprisingly express high levels of PD-L1. Although they morphologically resemble lymphocytes and actively produce transcripts from Immunoglobulin loci, IMLECs have non-rearranged Ig loci, are phenotypically distinguishable from all known lymphocytes, and have a gene signature that bridges lymphoid and myeloid leukocytes. Rptor deletion unleashes differentiation of IMLECs from common myeloid progenitor cells by reducing expression of Myb. Importantly, IMLECs broadly overexpress pattern-recognition receptors and their expansion causes systemic inflammation in response to Toll-like receptor ligands in mice. Our data unveil a novel leukocyte population and an unrecognized role of Raptor/mTORC1 in innate immune tolerance.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Fei Tang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peng Zhang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6218-1885
  3. Peiying Ye

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher A Lazarski

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qi Wu

    Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingrid L Bergin

    ULAM Pathology Cores for Animal Research, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy P Bender

    Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael N Hall

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ya Cui

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liguo Zhang

    Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Taijiao Jiang

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yang Liu

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    yaliu@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9442-700X
  13. Pan Zheng

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    pzheng@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (AI64350)

  • Yang Liu
  • Pan Zheng

National Cancer Institute (CA183030)

  • Yang Liu

National Institute on Aging (AG036690)

  • Pan Zheng

National Cancer Institute (CA171972)

  • Yang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal careand use committee (IACUC) protocols (312-13-12 and #00030574) of the Children's National Medical Center. Every effort was made to minimize suffering.

Copyright

© 2017, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,307
    views
  • 221
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu
  13. Pan Zheng
(2017)
A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice
eLife 6:e32497.
https://doi.org/10.7554/eLife.32497

Share this article

https://doi.org/10.7554/eLife.32497

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.