A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu  Is a corresponding author
  13. Pan Zheng  Is a corresponding author
  1. Children's National Medical Center, United States
  2. University of Michigan Medical School, United States
  3. University of Virginia, United States
  4. University of Basel, Switzerland
  5. Institute of Biophysics, Chinese Academy of Sciences, China

Abstract

Adaptive autoimmunity is restrained by controlling population sizes and pathogenicity of harmful clones, while innate destruction is controlled at effector phase. We report here that deletion of Rptor in mouse hematopoietic stem/progenitor cells causes self-destructive innate immunity by massively increasing the population of previously uncharacterized innate myelolymphoblastoid effector cells (IMLECs). Mouse IMLECs are CD3-B220-NK1.1-Ter119- CD11clow/-CD115-F4/80low/-Gr-1- CD11b+, but surprisingly express high levels of PD-L1. Although they morphologically resemble lymphocytes and actively produce transcripts from Immunoglobulin loci, IMLECs have non-rearranged Ig loci, are phenotypically distinguishable from all known lymphocytes, and have a gene signature that bridges lymphoid and myeloid leukocytes. Rptor deletion unleashes differentiation of IMLECs from common myeloid progenitor cells by reducing expression of Myb. Importantly, IMLECs broadly overexpress pattern-recognition receptors and their expansion causes systemic inflammation in response to Toll-like receptor ligands in mice. Our data unveil a novel leukocyte population and an unrecognized role of Raptor/mTORC1 in innate immune tolerance.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Fei Tang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peng Zhang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6218-1885
  3. Peiying Ye

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher A Lazarski

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qi Wu

    Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingrid L Bergin

    ULAM Pathology Cores for Animal Research, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy P Bender

    Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael N Hall

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ya Cui

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liguo Zhang

    Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Taijiao Jiang

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yang Liu

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    yaliu@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9442-700X
  13. Pan Zheng

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    pzheng@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (AI64350)

  • Yang Liu
  • Pan Zheng

National Cancer Institute (CA183030)

  • Yang Liu

National Institute on Aging (AG036690)

  • Pan Zheng

National Cancer Institute (CA171972)

  • Yang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal careand use committee (IACUC) protocols (312-13-12 and #00030574) of the Children's National Medical Center. Every effort was made to minimize suffering.

Copyright

© 2017, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,305
    views
  • 221
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu
  13. Pan Zheng
(2017)
A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice
eLife 6:e32497.
https://doi.org/10.7554/eLife.32497

Share this article

https://doi.org/10.7554/eLife.32497

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.