A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu  Is a corresponding author
  13. Pan Zheng  Is a corresponding author
  1. Children's National Medical Center, United States
  2. University of Michigan Medical School, United States
  3. University of Virginia, United States
  4. University of Basel, Switzerland
  5. Institute of Biophysics, Chinese Academy of Sciences, China

Abstract

Adaptive autoimmunity is restrained by controlling population sizes and pathogenicity of harmful clones, while innate destruction is controlled at effector phase. We report here that deletion of Rptor in mouse hematopoietic stem/progenitor cells causes self-destructive innate immunity by massively increasing the population of previously uncharacterized innate myelolymphoblastoid effector cells (IMLECs). Mouse IMLECs are CD3-B220-NK1.1-Ter119- CD11clow/-CD115-F4/80low/-Gr-1- CD11b+, but surprisingly express high levels of PD-L1. Although they morphologically resemble lymphocytes and actively produce transcripts from Immunoglobulin loci, IMLECs have non-rearranged Ig loci, are phenotypically distinguishable from all known lymphocytes, and have a gene signature that bridges lymphoid and myeloid leukocytes. Rptor deletion unleashes differentiation of IMLECs from common myeloid progenitor cells by reducing expression of Myb. Importantly, IMLECs broadly overexpress pattern-recognition receptors and their expansion causes systemic inflammation in response to Toll-like receptor ligands in mice. Our data unveil a novel leukocyte population and an unrecognized role of Raptor/mTORC1 in innate immune tolerance.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Fei Tang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peng Zhang

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6218-1885
  3. Peiying Ye

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher A Lazarski

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qi Wu

    Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ingrid L Bergin

    ULAM Pathology Cores for Animal Research, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy P Bender

    Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael N Hall

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ya Cui

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liguo Zhang

    Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Taijiao Jiang

    Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yang Liu

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    yaliu@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9442-700X
  13. Pan Zheng

    Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    pzheng@cnmc.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (AI64350)

  • Yang Liu
  • Pan Zheng

National Cancer Institute (CA183030)

  • Yang Liu

National Institute on Aging (AG036690)

  • Pan Zheng

National Cancer Institute (CA171972)

  • Yang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal careand use committee (IACUC) protocols (312-13-12 and #00030574) of the Children's National Medical Center. Every effort was made to minimize suffering.

Copyright

© 2017, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,308
    views
  • 221
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fei Tang
  2. Peng Zhang
  3. Peiying Ye
  4. Christopher A Lazarski
  5. Qi Wu
  6. Ingrid L Bergin
  7. Timothy P Bender
  8. Michael N Hall
  9. Ya Cui
  10. Liguo Zhang
  11. Taijiao Jiang
  12. Yang Liu
  13. Pan Zheng
(2017)
A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice
eLife 6:e32497.
https://doi.org/10.7554/eLife.32497

Share this article

https://doi.org/10.7554/eLife.32497

Further reading

    1. Immunology and Inflammation
    Aryeh Solomon, Noa Bossel Ben-Moshe ... Roi Avraham
    Research Article

    Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette–Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.