Offline replay supports planning in human reinforcement learning

  1. Ida Momennejad  Is a corresponding author
  2. A Ross Otto
  3. Nathaniel D Daw
  4. Kenneth A Norman
  1. Princeton University, United States
  2. McGill University, Canada

Abstract

Making decisions in sequentially structured tasks requires integrating distally acquired information. The extensive computational cost of such integration challenges planning methods that integrate online, at decision time. Furthermore, it remains unclear whether 'offline' integration during replay supports planning, and if so which memories should be replayed. Inspired by machine learning, we propose that (a) offline replay of trajectories facilitates integrating representations that guide decisions, and (b) unsigned prediction errors (uncertainty) trigger such integrative replay. We designed a 2-step revaluation task for fMRI, whereby participants needed to integrate changes in rewards with past knowledge to optimally replan decisions. As predicted, we found that (a) multi-voxel pattern evidence for off-task replay predicts subsequent replanning; (b) neural sensitivity to uncertainty predicts subsequent replay and replanning; (c) off-task hippocampus and anterior cingulate activity increase when revaluation is required. These findings elucidate how the brain leverages offline mechanisms in planning and goal-directed behavior under uncertainty.

Data availability

Neural and behavioral data have been available online at OpenNeuro (https://openneuro.org/datasets/ds001612/versions/1.0.0).

The following data sets were generated

Article and author information

Author details

  1. Ida Momennejad

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    idam@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0830-3973
  2. A Ross Otto

    Department of Psychology, McGill University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9997-1901
  3. Nathaniel D Daw

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-1430
  4. Kenneth A Norman

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5887-9682

Funding

John Templeton Foundation (57876)

  • Ida Momennejad
  • Kenneth A Norman

National Institute of Mental Health (R01MH109177)

  • Nathaniel D Daw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Badre, Brown University, United States

Ethics

Human subjects: The Princeton University Institutional Review Board approved the study. All participants gave informed consent to participate in the fMRI study and signed a screening form that ensured they had normal or corrected to normal vision, had no metal in their body, and had no history of psychiatric or neurological disorders.(Protocol#6014).

Version history

  1. Received: October 5, 2017
  2. Accepted: December 4, 2018
  3. Accepted Manuscript published: December 14, 2018 (version 1)
  4. Version of Record published: December 21, 2018 (version 2)

Copyright

© 2018, Momennejad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,023
    views
  • 756
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ida Momennejad
  2. A Ross Otto
  3. Nathaniel D Daw
  4. Kenneth A Norman
(2018)
Offline replay supports planning in human reinforcement learning
eLife 7:e32548.
https://doi.org/10.7554/eLife.32548

Share this article

https://doi.org/10.7554/eLife.32548

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.