Crk proteins transduce FGF signaling to promote lens fiber cell elongation

  1. Tamica N Collins
  2. Yingyu Mao
  3. Hongge Li
  4. Michael Bouaziz
  5. Angela Hong
  6. Gen-Sheng Feng
  7. Fen Wang
  8. Lawrence A Quilliam
  9. Lin Chen
  10. Taeju Park
  11. Tom Curran
  12. Xin Zhang  Is a corresponding author
  1. Columbia University, United States
  2. University of California, San Diego, United States
  3. Texas A&M, United States
  4. Indiana University School of Medicine, United States
  5. Third Military Medical University, China
  6. Children's Mercy Kansas City, United States

Abstract

Specific cell shapes are fundamental to the organization and function of multicellular organisms. Fibroblast Growth Factor (FGF) signaling induces the elongation of lens fiber cells during vertebrate lens development. Nonetheless, exactly how this extracellular FGF signal is transmitted to the cytoskeletal network has previously not been determined. Here, we show that the Crk family of adaptor proteins, Crk and Crkl, are required for mouse lens morphogenesis but not differentiation. Genetic ablation and epistasis experiments demonstrated that Crk and Crkl play overlapping roles downstream of FGF signaling in order to regulate lens fiber cell elongation. Upon FGF stimulation, Crk proteins were found to interact with Frs2, Shp2 and Grb. The loss of Crk proteins was partially compensated for by the activation of Ras and Rac signaling. These results reveal that Crk proteins are important partners of the Frs2/Shp2/Grb2 complex in mediating FGF signaling, specifically promoting cell shape changes.

Article and author information

Author details

  1. Tamica N Collins

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yingyu Mao

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongge Li

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Bouaziz

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Hong

    Department of Ophthalmology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gen-Sheng Feng

    Department of Pathology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Fen Wang

    Center for Cancer Biology and Nutrition, Texas A&M, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lawrence A Quilliam

    Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lin Chen

    Department of Rehabilitation Medicine, Third Military Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Taeju Park

    The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tom Curran

    The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Xin Zhang

    Department of Ophthalmology, Columbia University, New York, United States
    For correspondence
    xz2369@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5555-0825

Funding

National Eye Institute (EY017061)

  • Tamica N Collins
  • Yingyu Mao
  • Hongge Li
  • Angela Hong
  • Xin Zhang

National Eye Institute (5P30EY019007)

  • Xin Zhang

Research to Prevent Blindness (Jules and Doris Stein professorship)

  • Xin Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse maintenance and experimentation was performed according to protocols approved by Columbia University Institutional Animal Care and Use Committee (protocol AAAR0429).

Copyright

© 2018, Collins et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,048
    views
  • 315
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tamica N Collins
  2. Yingyu Mao
  3. Hongge Li
  4. Michael Bouaziz
  5. Angela Hong
  6. Gen-Sheng Feng
  7. Fen Wang
  8. Lawrence A Quilliam
  9. Lin Chen
  10. Taeju Park
  11. Tom Curran
  12. Xin Zhang
(2018)
Crk proteins transduce FGF signaling to promote lens fiber cell elongation
eLife 7:e32586.
https://doi.org/10.7554/eLife.32586

Share this article

https://doi.org/10.7554/eLife.32586

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.