Energy exchanges at contact events guide sensorimotor integration across intermodal delays

  1. Ali Farshchian  Is a corresponding author
  2. Alessandra Sciutti
  3. Assaf Pressman
  4. Ilana Nisky
  5. Ferdinando A Mussa-Ivaldi
  1. Northwestern University, United States
  2. Rehabilitation Institute of Chicago, United States
  3. Ben-Gurion University of the Negev, Israel

Abstract

The brain must consider the arm's inertia to predict the arm's movements elicited by commands impressed upon the muscles. Here, we present evidence suggesting that the integration of sensory information leading to the representation of the arm's inertia does not take place continuously in time but only at discrete transient events, in which kinetic energy is exchanged between the arm and the environment. We used a visuomotor delay to induce cross-modal variations in state feedback and uncovered that the difference between visual and proprioceptive velocity estimations at isolated collision events was compensated by a change in the representation of arm inertia. The compensation maintained an invariant estimate across modalities of the expected energy exchange with the environment. This invariance captures different types of dysmetria observed across individuals following prolonged exposure to a fixed intermodal temporal perturbation and provides a new interpretation for cerebellar ataxia.

Data availability

Data files for this manuscript are available through Dryad doi:10.5061/dryad.93kc5cb

The following data sets were generated

Article and author information

Author details

  1. Ali Farshchian

    Department of Biomedical Engineering, Northwestern University, Chicago, United States
    For correspondence
    a-farshchiansadegh@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9321-0944
  2. Alessandra Sciutti

    Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1056-3398
  3. Assaf Pressman

    Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilana Nisky

    Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4128-9771
  5. Ferdinando A Mussa-Ivaldi

    Department of Biomedical Engineering, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-7052

Funding

National Science Foundation (1632259)

  • Ferdinando A Mussa-Ivaldi

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by Northwestern University's Institutional Review Board (STU00026226) and all the participants signed an informed consent form.

Copyright

© 2018, Farshchian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,104
    views
  • 135
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali Farshchian
  2. Alessandra Sciutti
  3. Assaf Pressman
  4. Ilana Nisky
  5. Ferdinando A Mussa-Ivaldi
(2018)
Energy exchanges at contact events guide sensorimotor integration across intermodal delays
eLife 7:e32587.
https://doi.org/10.7554/eLife.32587

Share this article

https://doi.org/10.7554/eLife.32587

Further reading

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

    1. Neuroscience
    Georgin Jacob, RT Pramod, SP Arun
    Research Article

    Most visual tasks involve looking for specific object features. But we also often perform property-based tasks where we look for specific property in an image, such as finding an odd item, deciding if two items are same, or if an object has symmetry. How do we solve such tasks? These tasks do not fit into standard models of decision making because their underlying feature space and decision process is unclear. Using well-known principles governing multiple object representations, we show that displays with repeating elements can be distinguished from heterogeneous displays using a property we define as visual homogeneity. In behavior, visual homogeneity predicted response times on visual search, same-different and symmetry tasks. Brain imaging during visual search and symmetry tasks revealed that visual homogeneity was localized to a region in the object-selective cortex. Thus, property-based visual tasks are solved in a localized region in the brain by computing visual homogeneity.