1. Neuroscience
Download icon

Energy exchanges at contact events guide sensorimotor integration across intermodal delays

  1. Ali Farshchian  Is a corresponding author
  2. Alessandra Sciutti
  3. Assaf Pressman
  4. Ilana Nisky
  5. Ferdinando A Mussa-Ivaldi
  1. Northwestern University, United States
  2. Rehabilitation Institute of Chicago, United States
  3. Ben-Gurion University of the Negev, Israel
Research Article
  • Cited 3
  • Views 935
  • Annotations
Cite this article as: eLife 2018;7:e32587 doi: 10.7554/eLife.32587

Abstract

The brain must consider the arm's inertia to predict the arm's movements elicited by commands impressed upon the muscles. Here, we present evidence suggesting that the integration of sensory information leading to the representation of the arm's inertia does not take place continuously in time but only at discrete transient events, in which kinetic energy is exchanged between the arm and the environment. We used a visuomotor delay to induce cross-modal variations in state feedback and uncovered that the difference between visual and proprioceptive velocity estimations at isolated collision events was compensated by a change in the representation of arm inertia. The compensation maintained an invariant estimate across modalities of the expected energy exchange with the environment. This invariance captures different types of dysmetria observed across individuals following prolonged exposure to a fixed intermodal temporal perturbation and provides a new interpretation for cerebellar ataxia.

Article and author information

Author details

  1. Ali Farshchian

    Department of Biomedical Engineering, Northwestern University, Chicago, United States
    For correspondence
    a-farshchiansadegh@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9321-0944
  2. Alessandra Sciutti

    Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1056-3398
  3. Assaf Pressman

    Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilana Nisky

    Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4128-9771
  5. Ferdinando A Mussa-Ivaldi

    Department of Biomedical Engineering, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5343-7052

Funding

National Science Foundation (1632259)

  • Ferdinando A Mussa-Ivaldi

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by Northwestern University's Institutional Review Board (STU00026226) and all the participants signed an informed consent form.

Reviewing Editor

  1. Richard Ivry, University of California, Berkeley, United States

Publication history

  1. Received: October 7, 2017
  2. Accepted: May 13, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 1, 2018 (version 2)

Copyright

© 2018, Farshchian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 935
    Page views
  • 112
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Alicia Tapias et al.
    Research Article Updated

    Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (ransformation/translation domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism, and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics, and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT, and SP1 with microtubule dynamics, in neuroprotection.

    1. Neuroscience
    Lawrence Huang et al.
    Tools and Resources

    Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are often used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies only a minority of 1AP and 2AP events were detected (often <10% and ~20-30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions.