Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides

  1. Olivier Sallin
  2. Luc Reymond
  3. Corentin Gondrand
  4. Fabio Raith
  5. Birgit Koch
  6. Kai Johnsson  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. Max Planck Institute for Medical Research, Germany
  3. Max-Planck-Institute of Medical Research, Germany

Abstract

We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, & 4, and Appendix 1-Figures 1, 3, & 7.

Article and author information

Author details

  1. Olivier Sallin

    Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    Olivier Sallin, has filed a patent application (WO2016131833A1) on the design and use of sensors for the detection of NAD(P).
  2. Luc Reymond

    Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    Luc Reymond, has filed a patent application (WO2016131833A1) on the design and use of sensors for the detection of NAD(P).
  3. Corentin Gondrand

    Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  4. Fabio Raith

    Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  5. Birgit Koch

    Department of Chemical Biology, Max-Planck-Institute of Medical Research, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  6. Kai Johnsson

    Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    kai.johnsson@epfl.ch
    Competing interests
    Kai Johnsson, has filed a patent application (WO2016131833A1) on the design and use of sensors for the detection of NAD(P).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8002-1981

Funding

Max-Planck-Gesellschaft (Institutional support and open-access funding)

  • Kai Johnsson

Ecole Polytechnique Federale de Lausanne (Institutional support and open-access funding)

  • Corentin Gondrand

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yamuna Krishnan, University of Chicago, United States

Version history

  1. Received: October 9, 2017
  2. Accepted: May 9, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 6, 2018 (version 2)

Copyright

© 2018, Sallin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,624
    views
  • 1,330
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olivier Sallin
  2. Luc Reymond
  3. Corentin Gondrand
  4. Fabio Raith
  5. Birgit Koch
  6. Kai Johnsson
(2018)
Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides
eLife 7:e32638.
https://doi.org/10.7554/eLife.32638

Share this article

https://doi.org/10.7554/eLife.32638

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.