Interactions between stimulus and response types are more strongly represented in the entorhinal cortex than in its upstream regions in rats

  1. Eun-Hye Park
  2. Jae-Rong Ahn
  3. Inah Lee  Is a corresponding author
  1. Seoul National University, Republic of Korea

Abstract

Previously we reported results which suggested that response types are critical in dissociating the lateral entorhinal cortex (LEC) from the medial entorhinal cortex (MEC) in a scene memory task (Yoo and Lee, 2017). Here, we investigated whether the perirhinal cortex (PER) and postrhinal cortex (POR), the upstream regions of the LEC and MEC, respectively, could be dissociated similarly. We conducted four tasks by combining different stimulus and response types. Our results suggest that the PER is important whenever object recognition is required and, together with prior findings, imply that PER-LEC networks are essential in goal-directed interactions with objects. The POR appears critical for recognizing visual scenes and may play key roles in scene-based navigation together with the MEC. The relative lack of functional dissociation between stimulus and response types at the PER-POR level suggests that actions conditioned on the recognition of external stimuli may be uniquely represented from the EC.

Article and author information

Author details

  1. Eun-Hye Park

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae-Rong Ahn

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Inah Lee

    Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
    For correspondence
    inahlee@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3760-4257

Funding

National Research Foundation of Korea (2015M3C7A1031969)

  • Inah Lee

National Research Foundation of Korea (2016R1A2B4008692)

  • Inah Lee

National Research Foundation of Korea (2017M3C7A1029661)

  • Inah Lee

National Research Foundation of Korea (5286-2014100 (BK21+ program))

  • Inah Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Seoul National University (SNU-120925-1-7). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Geoffrey Schoenbaum, NIDA, United States

Publication history

  1. Received: October 10, 2017
  2. Accepted: December 22, 2017
  3. Accepted Manuscript published: December 27, 2017 (version 1)
  4. Version of Record published: January 17, 2018 (version 2)

Copyright

© 2017, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,192
    Page views
  • 246
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eun-Hye Park
  2. Jae-Rong Ahn
  3. Inah Lee
(2017)
Interactions between stimulus and response types are more strongly represented in the entorhinal cortex than in its upstream regions in rats
eLife 6:e32657.
https://doi.org/10.7554/eLife.32657

Further reading

    1. Cell Biology
    2. Neuroscience
    Meghan E Wynne, Oluwaseun Ogunbona ... Victor Faundez
    Research Article Updated

    Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.

    1. Neuroscience
    Abraham Katzen, Hui-Kuan Chung ... Shawn R Lockery
    Research Article Updated

    In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potentials are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a very small nervous system sets a new lower bound on the computational requirements for utility maximization and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution in this organism.