Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki  Is a corresponding author
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara  Is a corresponding author
  1. Kochi University of Technology, Japan
  2. Keio University, Japan

Abstract

Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.

Data availability

The data that support the findings of this study are openly available in Dryad Digital Repository (https://datadryad.org/).

The following data sets were generated

Article and author information

Author details

  1. Ruedeerat Keerativittayayut

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ryuta Aoki

    Research Center for Brain Communication, Kochi University of Technology, Kami, Japan
    For correspondence
    qqqqaokiq@yahoo.co.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Mitra Taghizadeh Sarabi

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Koji Jimura

    Department of Biosciences and Informatics, Keio University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiyoshi Nakahara

    School of Information, Kochi University of Technology, Kami, Japan
    For correspondence
    nakahara.kiyoshi@kochi-tech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6701-6216

Funding

Japan Society for the Promotion of Science (17H00891)

  • Ryuta Aoki
  • Koji Jimura
  • Kiyoshi Nakahara

Japan Society for the Promotion of Science (17H06268)

  • Kiyoshi Nakahara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roberto Cabeza, Duke University, United States

Ethics

Human subjects: All experimental procedures were approved by the Ethics Committee of Kochi University of Technology. Informed consent was obtained from all participants.

Version history

  1. Received: October 11, 2017
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: June 18, 2018 (version 1)
  4. Version of Record published: July 10, 2018 (version 2)
  5. Version of Record updated: July 29, 2019 (version 3)

Copyright

© 2018, Keerativittayayut et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,174
    views
  • 438
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara
(2018)
Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance
eLife 7:e32696.
https://doi.org/10.7554/eLife.32696

Share this article

https://doi.org/10.7554/eLife.32696

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.