Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki  Is a corresponding author
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara  Is a corresponding author
  1. Kochi University of Technology, Japan
  2. Keio University, Japan

Abstract

Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.

Data availability

The data that support the findings of this study are openly available in Dryad Digital Repository (https://datadryad.org/).

The following data sets were generated

Article and author information

Author details

  1. Ruedeerat Keerativittayayut

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ryuta Aoki

    Research Center for Brain Communication, Kochi University of Technology, Kami, Japan
    For correspondence
    qqqqaokiq@yahoo.co.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Mitra Taghizadeh Sarabi

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Koji Jimura

    Department of Biosciences and Informatics, Keio University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiyoshi Nakahara

    School of Information, Kochi University of Technology, Kami, Japan
    For correspondence
    nakahara.kiyoshi@kochi-tech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6701-6216

Funding

Japan Society for the Promotion of Science (17H00891)

  • Ryuta Aoki
  • Koji Jimura
  • Kiyoshi Nakahara

Japan Society for the Promotion of Science (17H06268)

  • Kiyoshi Nakahara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experimental procedures were approved by the Ethics Committee of Kochi University of Technology. Informed consent was obtained from all participants.

Copyright

© 2018, Keerativittayayut et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,227
    views
  • 441
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara
(2018)
Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance
eLife 7:e32696.
https://doi.org/10.7554/eLife.32696

Share this article

https://doi.org/10.7554/eLife.32696

Further reading

    1. Neuroscience
    Mi-Seon Kong, Ethan Ancell ... Larry S Zweifel
    Research Article

    The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.