Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki  Is a corresponding author
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara  Is a corresponding author
  1. Kochi University of Technology, Japan
  2. Keio University, Japan

Abstract

Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.

Data availability

The data that support the findings of this study are openly available in Dryad Digital Repository (https://datadryad.org/).

The following data sets were generated

Article and author information

Author details

  1. Ruedeerat Keerativittayayut

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ryuta Aoki

    Research Center for Brain Communication, Kochi University of Technology, Kami, Japan
    For correspondence
    qqqqaokiq@yahoo.co.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Mitra Taghizadeh Sarabi

    School of Information, Kochi University of Technology, Kami, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Koji Jimura

    Department of Biosciences and Informatics, Keio University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiyoshi Nakahara

    School of Information, Kochi University of Technology, Kami, Japan
    For correspondence
    nakahara.kiyoshi@kochi-tech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6701-6216

Funding

Japan Society for the Promotion of Science (17H00891)

  • Ryuta Aoki
  • Koji Jimura
  • Kiyoshi Nakahara

Japan Society for the Promotion of Science (17H06268)

  • Kiyoshi Nakahara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All experimental procedures were approved by the Ethics Committee of Kochi University of Technology. Informed consent was obtained from all participants.

Copyright

© 2018, Keerativittayayut et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,215
    views
  • 438
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruedeerat Keerativittayayut
  2. Ryuta Aoki
  3. Mitra Taghizadeh Sarabi
  4. Koji Jimura
  5. Kiyoshi Nakahara
(2018)
Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance
eLife 7:e32696.
https://doi.org/10.7554/eLife.32696

Share this article

https://doi.org/10.7554/eLife.32696

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.