Ecological multiplex interactions determine the role of species for parasite spread amplification

  1. Massimo Stella
  2. Sanja Selakovic
  3. Alberto Antonioni
  4. Cecilia Andreazzi  Is a corresponding author
  1. University of Southampton, United Kingdom
  2. Utrecht University, Netherlands
  3. University College London, United Kingdom
  4. Fundação Oswaldo Cruz, Brazil

Abstract

Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As an unifying framework for understanding parasite spread through interdependent transmission paths, we present the 'ecomultiplex' model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for T. cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems.

Data availability

All data generated or analysed during this study are included in the manuscript and appendices.

Article and author information

Author details

  1. Massimo Stella

    Institute for Complex Systems Simulation, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Sanja Selakovic

    Faculty of Geociences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Alberto Antonioni

    Department of Economics, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Cecilia Andreazzi

    Fiocruz Mata Atlântica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
    For correspondence
    cecilia.andreazzi@fiocruz.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9817-0635

Funding

Swiss National Science Foundation (P2LAP1-161864)

  • Alberto Antonioni

Netherlands Organization for Scientific Research (645.000.013)

  • Sanja Selakovic

Engineer Research and Development Center (EP/G03690X/1)

  • Massimo Stella

Netherlands Organization for Scientific Research (647570)

  • Sanja Selakovic

Swiss National Science Foundation (P300P1-171537)

  • Alberto Antonioni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nicole Gottdenker, University of Georgia, United States

Version history

  1. Received: October 15, 2017
  2. Accepted: April 20, 2018
  3. Accepted Manuscript published: April 23, 2018 (version 1)
  4. Version of Record published: May 21, 2018 (version 2)

Copyright

© 2018, Stella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,424
    views
  • 228
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Massimo Stella
  2. Sanja Selakovic
  3. Alberto Antonioni
  4. Cecilia Andreazzi
(2018)
Ecological multiplex interactions determine the role of species for parasite spread amplification
eLife 7:e32814.
https://doi.org/10.7554/eLife.32814

Share this article

https://doi.org/10.7554/eLife.32814

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.