The representational dynamics of task and object processing in humans

  1. Martin N Hebart  Is a corresponding author
  2. Brett B Bankson
  3. Assaf Harel
  4. Chris I Baker
  5. Radoslaw M Cichy
  1. National Institute of Mental Health, United States
  2. Wright State University, United States
  3. Free University of Berlin, Germany

Abstract

Despite the importance of an observer's goals in determining how a visual object is categorized, surprisingly little is known about how humans process the task context in which objects occur and how it may interact with the processing of objects. Using magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and multivariate techniques, we studied the spatial and temporal dynamics of task and object processing. Our results reveal a sequence of separate but overlapping task-related processes spread across frontoparietal and occipitotemporal cortex. Task exhibited late effects on object processing by selectively enhancing task-relevant object features, with limited impact on the overall pattern of object representations. Combining MEG and fMRI data, we reveal a parallel rise in task-related signals throughout the cerebral cortex, with an increasing dominance of task over object representations from early to higher visual areas. Collectively, our results reveal the complex dynamics underlying task and object representations throughout human cortex.

Article and author information

Author details

  1. Martin N Hebart

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    For correspondence
    martin.hebart@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7257-428X
  2. Brett B Bankson

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7663-3918
  3. Assaf Harel

    Department of Psychology, Wright State University, Dayton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris I Baker

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6861-8964
  5. Radoslaw M Cichy

    Department of Education and Psychology, Free University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health

  • Martin N Hebart
  • Brett B Bankson
  • Chris I Baker

Deutsche Forschungsgemeinschaft

  • Radoslaw M Cichy

Alexander von Humboldt-Stiftung

  • Martin N Hebart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent as part of the study protocol (93-M-0170, NCT00001360) prior to participation in the study. The study was approved by the Institutional Review Board of the National Institutes of Health and was conducted according to the Declaration of Helsinki.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,099
    views
  • 890
    downloads
  • 155
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin N Hebart
  2. Brett B Bankson
  3. Assaf Harel
  4. Chris I Baker
  5. Radoslaw M Cichy
(2018)
The representational dynamics of task and object processing in humans
eLife 7:e32816.
https://doi.org/10.7554/eLife.32816

Share this article

https://doi.org/10.7554/eLife.32816

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.