MPDZ promotes DLL4-induced Notch signaling during angiogenesis

Abstract

Angiogenesis is coordinated by VEGF and Notch signaling. DLL4-induced Notch signaling inhibits tip cell formation and vessel branching. To ensure proper Notch signaling, receptors and ligands are clustered at adherens junctions. However, little is known about factors that control Notch activity by influencing the cellular localization of Notch ligands. Here we show that the multiple PDZ domain protein (MPDZ) enhances Notch signaling activity. MPDZ physically interacts with the intracellular carboxyterminus of DLL1 and DLL4 and enables their interaction with the adherens junction protein Nectin-2. Inactivation of the MPDZ gene leads to impaired Notch signaling activity and increased blood vessel sprouting in cellular models and the embryonic mouse hindbrain. Tumor angiogenesis was enhanced upon endothelial-specific inactivation of MPDZ leading to an excessively branched and poorly functional vessel network resulting in tumor hypoxia. As such, we identified MPDZ as a novel modulator of Notch signaling by controlling ligand recruitment to adherens junctions.

Article and author information

Author details

  1. Fabian Tetzlaff

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. M Gordian Adam

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anja Feldner

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Iris Moll

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Amitai Menuchin

    Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Juan Rodriguez-Vita

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9547-5508
  7. David Sprinzak

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6776-6957
  8. Andreas Fischer

    Division Vascular Signaling and Cancer, German Cancer Research Center, Heidelberg, Germany
    For correspondence
    a.fischer@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4889-0909

Funding

Deutsche Forschungsgemeinschaft (SFB-TR23 (A7))

  • Andreas Fischer

Helmholtz-Gemeinschaft

  • Andreas Fischer

Cooperation program in cancer research (CA156)

  • Fabian Tetzlaff
  • Amitai Menuchin
  • David Sprinzak
  • Andreas Fischer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elisabetta Dejana, FIRC Institute of Molecular Oncology, Italy

Ethics

Animal experimentation: Mice were kept under pathogen-free barrier conditions. All animal procedures were performed in accordance with the institutional and national regulations and approved by the local committees for animal experimentation (Heidelberg University and DKFZ) and the local government (Regierungspräsidium Karlsruhe, Germany).(reference number: 35-9185.81/G-30/14 and 35-9185.81/G-259/12).

Version history

  1. Received: October 16, 2017
  2. Accepted: April 4, 2018
  3. Accepted Manuscript published: April 5, 2018 (version 1)
  4. Version of Record published: May 3, 2018 (version 2)
  5. Version of Record updated: September 19, 2018 (version 3)

Copyright

© 2018, Tetzlaff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,608
    views
  • 379
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Tetzlaff
  2. M Gordian Adam
  3. Anja Feldner
  4. Iris Moll
  5. Amitai Menuchin
  6. Juan Rodriguez-Vita
  7. David Sprinzak
  8. Andreas Fischer
(2018)
MPDZ promotes DLL4-induced Notch signaling during angiogenesis
eLife 7:e32860.
https://doi.org/10.7554/eLife.32860

Share this article

https://doi.org/10.7554/eLife.32860

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.