Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy

  1. Gian-Luca McLelland
  2. Thomas Goiran
  3. Wei Yi
  4. Geneviève Dorval
  5. Carol X Chen
  6. Nadine D Lauinger
  7. Andrea I Krahn
  8. Sepideh Valimehr
  9. Aleksandar Rakovic
  10. Isabelle Rouiller
  11. Thomas M Durcan
  12. Jean-François Trempe
  13. Edward A Fon  Is a corresponding author
  1. Montreal Neurological Institute and Hospital, McGill University, Canada
  2. McGill University, Canada
  3. University of Lübeck, Germany

Abstract

Despite their importance as signaling hubs, the function of mitochondria-ER contact sites in mitochondrial quality control pathways remains unexplored. Here we describe a mechanism by which Mfn2, a mitochondria-ER tether, gates the autophagic turnover of mitochondria by PINK1 and parkin. Mitochondria-ER appositions are destroyed during mitophagy, and reducing mitochondria-ER contacts increases the rate of mitochondrial degradation. Mechanistically, parkin/PINK1 catalyze a rapid burst of Mfn2 phosphoubiquitination to trigger p97-dependent disassembly of Mfn2 complexes from the outer mitochondrial membrane, dissociating mitochondria from the ER. We additionally demonstrate that a major portion of the facilitatory effect of p97 on mitophagy is epistatic to Mfn2 and promotes the availability of other parkin substrates such as VDAC1. Finally, we reconstitute the action of these factors on Mfn2 and VDAC1 ubiquitination in a cell-free assay. We show that mitochondria-ER tethering suppresses mitophagy and describe a parkin-/PINK1-dependent mechanism that regulates the destruction of mitochondria-ER contact sites.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

Article and author information

Author details

  1. Gian-Luca McLelland

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Goiran

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Yi

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Geneviève Dorval

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Carol X Chen

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadine D Lauinger

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea I Krahn

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Sepideh Valimehr

    Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Aleksandar Rakovic

    Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabelle Rouiller

    Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas M Durcan

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Jean-François Trempe

    Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Edward A Fon

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    For correspondence
    ted.fon@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5520-6239

Funding

Canadian Institutes of Health Research (Canada Graduate Scholarship)

  • Gian-Luca McLelland

Canadian Institutes of Health Research (Foundation Grant)

  • Edward A Fon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University Frankfurt, Germany

Version history

  1. Received: November 8, 2017
  2. Accepted: April 19, 2018
  3. Accepted Manuscript published: April 20, 2018 (version 1)
  4. Version of Record published: April 30, 2018 (version 2)

Copyright

© 2018, McLelland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,488
    views
  • 1,944
    downloads
  • 258
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gian-Luca McLelland
  2. Thomas Goiran
  3. Wei Yi
  4. Geneviève Dorval
  5. Carol X Chen
  6. Nadine D Lauinger
  7. Andrea I Krahn
  8. Sepideh Valimehr
  9. Aleksandar Rakovic
  10. Isabelle Rouiller
  11. Thomas M Durcan
  12. Jean-François Trempe
  13. Edward A Fon
(2018)
Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
eLife 7:e32866.
https://doi.org/10.7554/eLife.32866

Share this article

https://doi.org/10.7554/eLife.32866

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.