Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy

  1. Gian-Luca McLelland
  2. Thomas Goiran
  3. Wei Yi
  4. Geneviève Dorval
  5. Carol X Chen
  6. Nadine D Lauinger
  7. Andrea I Krahn
  8. Sepideh Valimehr
  9. Aleksandar Rakovic
  10. Isabelle Rouiller
  11. Thomas M Durcan
  12. Jean-François Trempe
  13. Edward A Fon  Is a corresponding author
  1. Montreal Neurological Institute and Hospital, McGill University, Canada
  2. McGill University, Canada
  3. University of Lübeck, Germany

Abstract

Despite their importance as signaling hubs, the function of mitochondria-ER contact sites in mitochondrial quality control pathways remains unexplored. Here we describe a mechanism by which Mfn2, a mitochondria-ER tether, gates the autophagic turnover of mitochondria by PINK1 and parkin. Mitochondria-ER appositions are destroyed during mitophagy, and reducing mitochondria-ER contacts increases the rate of mitochondrial degradation. Mechanistically, parkin/PINK1 catalyze a rapid burst of Mfn2 phosphoubiquitination to trigger p97-dependent disassembly of Mfn2 complexes from the outer mitochondrial membrane, dissociating mitochondria from the ER. We additionally demonstrate that a major portion of the facilitatory effect of p97 on mitophagy is epistatic to Mfn2 and promotes the availability of other parkin substrates such as VDAC1. Finally, we reconstitute the action of these factors on Mfn2 and VDAC1 ubiquitination in a cell-free assay. We show that mitochondria-ER tethering suppresses mitophagy and describe a parkin-/PINK1-dependent mechanism that regulates the destruction of mitochondria-ER contact sites.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

Article and author information

Author details

  1. Gian-Luca McLelland

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Goiran

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Yi

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Geneviève Dorval

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Carol X Chen

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadine D Lauinger

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea I Krahn

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Sepideh Valimehr

    Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Aleksandar Rakovic

    Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Isabelle Rouiller

    Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas M Durcan

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Jean-François Trempe

    Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Edward A Fon

    McGill Parkinson Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
    For correspondence
    ted.fon@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5520-6239

Funding

Canadian Institutes of Health Research (Canada Graduate Scholarship)

  • Gian-Luca McLelland

Canadian Institutes of Health Research (Foundation Grant)

  • Edward A Fon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, McLelland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,983
    views
  • 2,021
    downloads
  • 284
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gian-Luca McLelland
  2. Thomas Goiran
  3. Wei Yi
  4. Geneviève Dorval
  5. Carol X Chen
  6. Nadine D Lauinger
  7. Andrea I Krahn
  8. Sepideh Valimehr
  9. Aleksandar Rakovic
  10. Isabelle Rouiller
  11. Thomas M Durcan
  12. Jean-François Trempe
  13. Edward A Fon
(2018)
Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
eLife 7:e32866.
https://doi.org/10.7554/eLife.32866

Share this article

https://doi.org/10.7554/eLife.32866

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.