IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling

  1. Yosuke Yoneyama
  2. Peter Lanzerstorfer
  3. Hideaki Niwa
  4. Takashi Umehara
  5. Takashi Shibano
  6. Shigeyuki Yokoyama
  7. Kazuhiro Chida
  8. Julian Weghuber
  9. Fumihiko Hakuno  Is a corresponding author
  10. Shin-Ichiro Takahashi  Is a corresponding author
  1. The University of Tokyo, Japan
  2. University of Applied Sciences Upper Austria, Austria
  3. RIKEN Systems and Structural Biology Center, Japan
  4. RIKEN Center for Life Science Technologies, Japan
  5. Japan Science and Technology Agency, Japan
  6. RIKEN Structural Biology Laboratory, Japan
  7. Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Austria
9 figures, 2 tables and 1 additional file

Figures

Figure 1 with 1 supplement
IRS-1 interacts with the clathrin adaptor AP2 complex through its YxxΦ motifs.

(A) Yeast two-hybrid assay indicating the interaction of IRS-1 with the μ2 subunit of AP2. (B) The association of IRS-1 or IRS-2 with endogenous AP2 subunits was analyzed by immunoprecipitation in …

https://doi.org/10.7554/eLife.32893.003
Figure 1—figure supplement 1
Three YxxΦ motifs in IRS-1 mediate the interaction with μ2 of AP2 complex.

(A) Sequence alignment of three IRS-1 YxxΦ peptides used for structural analysis. (B) Structural details of IRS-1 YxxΦ motif binding to C-μ2. The overall structures of C-μ2 with these peptides were …

https://doi.org/10.7554/eLife.32893.004
Figure 2 with 1 supplement
IRS-1 promotes cell surface retention of activated IGF-IR via its YxxΦ motifs.

(A) Changes in cell surface IGF-IR following IGF-I stimulation in L6 cells were analyzed by surface biotinylation assay. Transferrin receptor (TfR) was evaluated as a loading control for cell …

https://doi.org/10.7554/eLife.32893.006
Figure 2—figure supplement 1
Expression of IRS-1, but not IRS-2, inhibits the down-regulation of activated IGF-IR induced by long-term IGF-I stimulation.

(A) Phosphorylation of multiple Tyr residues in IGF-IR in L6 cells stimulated with IGF-I for the indicated time was analyzed by immunoprecipitation and immunoblotting with the indicated antibodies. …

https://doi.org/10.7554/eLife.32893.007
Figure 3 with 4 supplements
Internalization of activated IGF-IR is dependent on the clathrin/AP2-mediated endocytic pathway.

(A) Knockdown of clathrin heavy chain (HC) by two different siRNAs blocked long-term IGF-I-induced reduction of phospho-IGF-IR in L6 cells. Ctrl, control. The data are representative of three …

https://doi.org/10.7554/eLife.32893.008
Figure 3—figure supplement 1
AP2, but not AP1, is required for the targeting of activated IGF-IR from the plasma membrane into lysosomes.

(A) L6 cells were transfected with non-targeting or μ1 siRNA followed by IGF-I stimulation for the indicated time. Changes in phospho-IGF-IR were analyzed by immunoprecipitation and immunoblotting …

https://doi.org/10.7554/eLife.32893.009
Figure 3—figure supplement 2
Effects of cycloheximide treatment and PTP1B D181A expression on surface IGF-IR changes after the ligand exposure.

(A) Changes in cell surface IGF-IR following IGF-I stimulation in L6 cells that were pre-treated with cycloheximide were analyzed by surface biotinylation assay. (B) L6 cells stably expressing …

https://doi.org/10.7554/eLife.32893.010
Figure 3—figure supplement 3
Chase of internalized IGF-IR.

(A) L6 cells were surface-labeled with a cleavable biotin reagent at 4°C and then warmed to 37°C in the presence or absence of IGF-I for the indicated time. Biotin was removed from surface proteins …

https://doi.org/10.7554/eLife.32893.011
Figure 3—figure supplement 4
Colocalization of IGF-IR with AP2 in response to the ligand treatment.

(A, B) L6 cells stably expressing IGF-IR-EGFP were stimulated with or without IGF-I stimulation for 1 hr. Colocalization of phospho-IGF-IR with AP2 (A) or clathrin heavy chain (B) was analyzed in …

https://doi.org/10.7554/eLife.32893.012
Figure 4 with 2 supplements
IRS-1 inhibits the recruitment of active IGF-IR into clathrin-coated structures.

(A) Changes in surface phospho-IGF-IR following IGF-I stimulation in the presence of primaquine were analyzed in L6 cells stably expressing GFP, GFP-IRS-1 WT, or GFP-IRS-1 3YA by surface …

https://doi.org/10.7554/eLife.32893.013
Figure 4—figure supplement 1
Effects of IRS-1 overexpression on AP2-positive spot formation and endocytosis of transferrin receptor.

(A) Co-immunoprecipitation of IGF-IR and transferrin receptor (TfR) in L6 cells stably expressing IGF-IR-FLAG. Immunoprecipitation and immunoblotting were performed with the indicated antibodies. (B)…

https://doi.org/10.7554/eLife.32893.014
Figure 4—figure supplement 2
Effects of IRS-1 overexpression on endocytosis of integrin β1 and EGFR.

(A) Co-immunoprecipitation of IGF-IR and integrin β1 in L6 cells stably expressing integrin β1. Immunoprecipitation and immunoblotting were performed with the indicated antibodies. (B) L6 cells …

https://doi.org/10.7554/eLife.32893.015
Figure 5 with 1 supplement
Depletion of IRS-1 accelerates AP2-dependent internalization of IGF-IR.

(A, B) L6 cells transfected with non-targeting (Ctrl) or IRS-1 siRNA were stimulated with IGF-I for the indicated time. Phosphorylation of IGF-IR was analyzed by immunoprecipitation and …

https://doi.org/10.7554/eLife.32893.016
Figure 5—figure supplement 1
IRS-1 inhibits the targeting of IGF-IR into lysosomes.

(A) L6 cells stably expressing IGF-IR-EGFP were transfected with non-targeting or IRS-1 siRNA. The cells were stimulated with IGF-I in the presence of leupeptin and pepstatin A for 1 hr. Prior to …

https://doi.org/10.7554/eLife.32893.017
mTOR-dependent degradation of IRS-1 is required for the initiation of IGF-IR internalization.

(A) Changes in IRS-1 and Akt phosphorylation following IGF-I stimulation were analyzed in L6 cells by immunoblotting. (B, C) L6 cells were treated with Torin1 or rapamycin followed by IGF-I …

https://doi.org/10.7554/eLife.32893.018
Figure 7 with 1 supplement
IRS-1 is required for sustained activation of Akt and FoxO inactivation in response to IGF-I.

(A, B) Immunoblotting after treating with IGF-I for the indicated time in L6 cells stably expressing GFP, GFP-IRS-1 WT, or GFP-IRS-1 3YA (A). Immunoblots of phospho-Akt (S473) and phospho-FoxO1 …

https://doi.org/10.7554/eLife.32893.019
Figure 7—figure supplement 1
Neither overexpression of IRS-2 nor solely blocking of IGF-IR internalization leads to sustained activation of Akt.

(A) Immunoblots of phospho-Akt (S473) in Figure 2—figure supplement 1C were quantified and the graph is shown as mean ± SEM of three independent experiments. (B) Immunoblotting after treating with …

https://doi.org/10.7554/eLife.32893.020
Figure 8 with 1 supplement
IRS-1 is required for efficient down-regulation of atrophy-related genes mediated by IGF-I.

(A) Quantitative RT-PCR analysis of atrophy-related genes from L6 myotubes stimulated with IGF-I. Data are expressed as fold of the value at 0 hr of IGF-I stimulation. Values are mean ±SEM (n = 3). …

https://doi.org/10.7554/eLife.32893.021
Figure 8—figure supplement 1
Long-term IGF-I stimulation suppresses the FoxO-regulated genes.

(A, B) Quantitative RT-PCR analysis of Smart and Musa1 from L6 myotubes stimulated with IGF-I (A), and of the FoxO-regulated genes from L6 myoblasts stimulated with IGF-I (B) is shown. Data are …

https://doi.org/10.7554/eLife.32893.022
Model of IRS-1-mediated control for delayed IGF-IR internalization and its role in the sustained IGF signaling.

(A) The canonical view in which IRS-1 functions as a signaling mediator of IGF-IR to the PI3K-Akt pathway through their Tyr phosphorylation. The molecular basis for closed interactions between …

https://doi.org/10.7554/eLife.32893.023

Tables

Table 1
Data collection and refinement statistics
https://doi.org/10.7554/eLife.32893.005
Y608 peptide complexY628 peptide complexY658 peptide complex
Crystal parameters
 Space groupP64P64P64
 Cell dimensions:
a, b, c (Å)126.07, 126.07, 73.40126.19, 126.19, 74.11125.48, 125.48, 74.14
α, β, γ (°)90, 90, 12090, 90, 12090, 90, 120
Data collection
 Wavelength (Å)1.0001.0001.000
 Resolution (Å)50–2.63 (2.68–2.63)*50–3.10 (3.15–3.10)50–2.60 (2.64–2.60)
 No. of unique reflections200351241920659
 Multiplicity11.3 (10.9)11.3 (11.4)11.4 (11.5)
 Completeness (%)100 (100)100 (100)100 (100)
Rmeas0.078 (1.504)0.103 (1.880)0.094 (2.069)
Rpim0.023 (0.455)0.031 (0.556)0.028 (0.608)
 CC1/2(0.743)(0.646)(0.780)
 Mean I28.1 (1.8)24.8 (1.6)26.5 (1.6)
Refinement
 Resolution (Å)43–2.6236–3.1036–2.60
 No. of reflections199771232220589
Rwork/Rfree0.185/0.2230.194/0.2510.192/0.227
 RMSD bond lengths (Å)0.0080.0100.009
 RMSD bond angles (°)0.9481.1940.965
 No. of atoms
  Protein/peptide200321212118
  Water/ion2034
 Ramachandran plot
  Favored (%)95.592.395.4
  Outliers (%)000
PDB accession code:5WRK5WRL5WRM
  1. *Values in parentheses are for highest resolution shell.

Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Escherichia coli)BL21Agilent TechnologiesAgilent Technologies: 200133
Strain, strain background(Escherichia coli)BL21-CodonPlus(DE3)-RILAgilent TechnologiesAgilent Technologies: 230245
Cell line (Rattus norvegicus)L6ATCCATCC: CRL-1458; RRID: CVCL_0385
Cell line (Homo sapiens)293TATCCATCC: CRL-3216; RRID: CVCL_0063
Cell line (Homo sapiens)PLAT-EPMID: 10871756RRID: CVCL_B488A kind gift from T. Kitamura, The University of Tokyo
AntibodyRabbit polyclonal anti-phospho-IGF-IRβ (Tyr1131)Cell Signaling TechnologyCell Signaling Technology: 3021; RRID: AB_331578IB 1:1000; IF 1:200
AntibodyRabbit monoclonal anti-phospho-IGF-IRβ (Tyr980)Cell Signaling TechnologyCell Signaling Technology: 4568; RRID: AB_2122279IB 1:1000
AntibodyRabbit polyclonal anti-phospho-IGF-IRβ (Tyr1316)Cell Signaling TechnologyCell Signaling Technology: 6113; RRID: AB_10545762IB 1:1000
AntibodyRabbit monoclonal anti-IGF-IRβCell Signaling TechnologyCell Signaling Technology: 9750; RRID: AB_10950969IF 1:200
AntibodyRabbit polyclonal anti-AktCell Signaling TechnologyCell Signaling Technology: 9272; RRID: AB_329827IB 1:1000
AntibodyRabbit polyclonal anti-phospho-Akt (Thr308)Cell Signaling TechnologyCell Signaling Technology: 9275; RRID: AB_329828IB 1:1000
AntibodyRabbit polyclonal anti-phospho-Akt (Ser473)Cell Signaling TechnologyCell Signaling Technology: 9271; RRID: AB_329825IB 1:1000
AntibodyRabbit monoclonal anti-phospho-p70 S6K (Thr389)Cell Signaling TechnologyCell Signaling Technology: 9234; RRID: AB_2269803IB 1:1000
AntibodyRabbit polyclonal anti-phospho-FoxO1 (Thr24)/FoxO3a (Thr32)Cell Signaling TechnologyCell Signaling Technology: 9464; RRID: AB_329842IB 1:1000
AntibodyRabbit polyclonal anti-phospho-FoxO1 (Sere256)Cell Signaling TechnologyCell Signaling Technology: 9461; RRID: AB_329831IB 1:1000
AntibodyRabbit monoclonal anti-FoxO1Cell Signaling TechnologyCell Signaling Technology: 2880; RRID: AB_2106495IB 1:1000
AntibodyRabbit polyclonal anti-IGF-IRαSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-712; RRID: AB_671788IB 1:1000
AntibodyRabbit polyclonal anti-IGF-IRβSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-713; RRID: AB_671792IB 1:1000; IP 1:200
AntibodyRabbit polyclonal anti-IRS-2Santa Cruz BiotechnologySanta Cruz Biotechnology: sc-8299; RRID: AB_2125783IB 1:1000
AntibodyMouse monoclonal anti-clathrin HCSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-12734; RRID: AB_627263IB 1:1000
AntibodyMouse monoclonal anti-α-adaptinSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-17771; RRID: AB_2274034IB 1:1000; IF 1:200
AntibodyRabbit polyclonal anti-p70 S6KSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-230; RRID: AB_632156IB 1:1000
AntibodyMouse monoclonal anti-HSP90Santa Cruz BiotechnologySanta Cruz Biotechnology: sc-7947; RRID: AB_2121235IB 1:2000
AntibodyRabbit polyclonal anti-γ-adaptinSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-10763; RRID: AB_2058329IB 1:1000
AntibodyMouse monoclonal anti-GFPSanta Cruz BiotechnologySanta Cruz Biotechnology: sc-9996; RRID: AB_627695IB 1:1000; IP 1:200
AntibodyMouse monoclonal anti-ubiquitin (P4D1)Santa Cruz BiotechnologySanta Cruz Biotechnology: sc-8017; RRID: AB_628423IB 1:200
AntibodyMouse monoclonal anti-FLAG M2Sigma-AldrichSigma-Aldrich: F3165; RRID: AB_259529IB 1:2000
AntibodyAnti-FLAG M2 agarose affinity gelSigma-AldrichSigma-Aldrich: A2220; RRID: AB_10063035
AntibodyMouse monoclonal anti-α-tubulin (DM1A)Sigma-AldrichSigma-Aldrich: T6199; RRID: AB_477583IB 1:2000
AntibodyMouse monoclonal anti-phospho-Tyr (4G10)Sigma-AldrichSigma-Aldrich: 05-1050X; RRID: AB_916370IB 1:1000
AntibodyRabbit polyclonal anti-IRS-1UpstateUpstate: 06-248; RRID:AB_2127890IB 1:1000
AntibodyMouse monoclonal anti-myosin heavy chainUpstateUpstate: 05-716; RRID: AB_309930IF 1:200
AntibodyMouse monoclonal anti-MycUpstateUpstate: 05-419; RRID: AB_309725IF 1:200
AntibodyRabbit polyclonal anti-p85 PI3 kinaseUpstateUpstate: 06-195; RRID: AB_310069IB 1:1000
AntibodyMouse monoclonal anti-μ2BD Transduction LaboratoriesBD Transduction Laboratories: 611350; RRID: AB_398872IB 1:1000
AntibodyMouse monoclonal anti-clathrinabcamabcam: ab2731; RRID: AB_303256IF 1:200
AntibodyRabbit monoclonal anti-integrin β1abcamabcam: ab52971; RRID: AB_870695IB 1:1000
AntibodyMouse monoclonal anti-transferrin receptor (H68.4)InvitrogenInvitrogen: 13-6800; RRID: AB_86623IB 1:1000
AntibodyMouse monoclonal anti-integrin β1 (TS2/16)InvitrogenInvitrogen: 14-0299-82; RRID: AB_1210468IF 1:500
AntibodyRat monoclonal anti-HA (3F10)RocheRoche: 11-867-423-001; RRID: AB_10094468IF 1:200
AntibodyAlexa 488-, 594- or 633- secondariesMolecular ProbesIF 1:1000
AntibodyRabbit polyclonal anti-IRS-1PMID: 23478262IP 1:200
Recombinant DNA reagentpFLAG-CMV-IRS-1 1-865 (plasmid)This paperVector: pFLAG-CMV; Insert: Rat IRS-1 1-865
Recombinant DNA reagentpFLAG-CMV-IRS-1 1-542 (plasmid)This paperVector: pFLAG-CMV; Insert: Rat IRS-1 1-542
Recombinant DNA reagentpFLAG-CMV-IRS-1 1-259 (plasmid)This paperVector: pFLAG-CMV; Insert: Rat IRS-1 1-259
Recombinant DNA reagentpFLAG-CMV-IRS-1 (plasmid)This paperVector: pFLAG-CMV; Insert: Rat IRS-1 full-length
Recombinant DNA reagentpFLAG-CMV-IRS-2 (plasmid)PMID: 21168390Vector: pFLAG-CMV; Insert: human IRS-2
Recombinant DNA reagentpMXs-Puro-EGFP-IRS-1 (plasmid)This paperVector: pMXs-Puro; Insert: EGFP-IRS-1 wild-type
Recombinant DNA reagentpMXs-Puro-EGFP-IRS-1 3YA (plasmid)This paperVector: pMXs-Puro; Insert: EGFP-IRS-1 3YA
Recombinant DNA reagentpMXs-Puro-EGFP-IRS-1ΔPTB (plasmid)This paperVector: pMXs-Puro; Insert: EGFP-IRS-1 DPTB
Recombinant DNA reagentpMXs-Puro-EGFP (plasmid)This paperVector: pMXs-Puro; Insert: EGFP
Recombinant DNA reagentpMXs-Puro-EGFP-IRS-2 (plasmid)This paperVector: pMXs-Puro; Insert:
EGFP-rat IRS-2
Recombinant DNA reagentpIGF-IR-EGFP (plasmid)This paperVector: pEGFP-N1; Insert:
human IGF-IR
Recombinant DNA reagentpMXs-Puro-IGF-IR-FLAG (plasmid)This paperVector: pMXs-Puro; Insert: IGF-IR-FLAG
Recombinant DNA reagentpMXs-Puro-IGF-IR-EGFP (plasmid)This paperVector: pMXs-Puro; Insert: IGF-IR-EGFP
Recombinant DNA reagentpMXs-Puro-IGF-IR-HA-EGFP (plasmid)This paperVector: pMXs-Puro; Insert: IGF-IR-HA-EGFP
Recombinant DNA reagentpMXs-Puro-integrinβ1 (plasmid)This paperVector: pMXs-Puro; Insert: human integrin b1
Recombinant DNA reagentEGFR-GFP (plasmid)AddgeneAddgene: 32751
Recombinant DNA reagentpσ2-mRFP (plasmid)This paperVector: pCS2-mRFP4; Insert: rat s2 subunit
Recombinant DNA reagentpmRFP-C1 (plasmid)This paper
Recombinant DNA reagentpmRFP-IRS-1 (plasmid)This paperVector: pmRFP-C1; Insert: rat IRS-1
Recombinant DNA reagentpGEX-μ1 (plasmid)PMID: 23478262Vector: pGEX-5X-3; Insert: mouse m1
Recombinant DNA reagentpGEX-μ2 (plasmid)This paperVector: pGEX-5X-3; Insert: mouse m2
Recombinant DNA reagentpGEX-C-μ2 (plasmid)This paperVector: pGEX-5X-3; Insert: mouse m2 C-terminal domain
Recombinant DNA reagentpET15b-C-μ2 (plasmid)This paperVector: pET15b; Insert: rat m2 C-terminal domain
Recombinant DNA reagentpLV-hU6-EF1a-greenBiosettiaBiosettia: SORT-B05
Recombinant DNA reagentpCAG-HIVgpRIKENRDB04394
Recombinant DNA reagentpCMV-VSV-G-RSV-RevRIKENREB04393
Sequence-based reagentsiRNA targeting clathrin #1RNAi Corp.5’-GUAUGCCUCUGAAUCGAAAGA-3’
Sequence-based reagentsiRNA targeting clathrin #2RNAi Corp.5’-CAGAAGAAUCGACGUUAUUUU-3’
Sequence-based reagentsiRNA targeting μ2 #1RNAi Corp.5’-CGAAGUGGCAUUUACGAAACC-3’
Sequence-based reagentsiRNA targeting μ2 #2RNAi Corp.5’-CUGCUUUGGGAUAGUAUGAGC-3’
Sequence-based reagentsiRNA targeting IRS-1 #1RNAi Corp.5’-CAAUGAGUGUGCAUAAACUUC-3’
Sequence-based reagentsiRNA targeting IRS-1 #2RNAi Corp.5’-GCCUCGAAAGGUAGACACAGC-3’
Sequence-based reagentsiRNA targeting μ1RNAi Corp.5’-CAGACGGAGAAUUCGAACUCA-3’
Sequence-based reagentNon-targeting control siRNARNAi Corp.5’-GUACCGCACGUCAUUCGUAUC-3’
Sequence-based reagentshRNA targeting LacZInvitrogen5’-GCTACACAAATCAGCGATTT-3’(targeting sequence)
Sequence-based reagentshRNA targeting IRS-1 #5Invitrogen5’-GCAGGCACCATCTCAACAATCC-3’(targeting sequence)
Sequence-based reagentshRNA targeting IRS-1 #6Invitrogen5’-GAGAATATGTGAATATTGAATC-3’(targeting sequence)
Sequence-based reagentFbxo32-qPCR forward primerInvitrogenACTTCTCGACTGCCATCCTG
Sequence-based reagentFbxo32-qPCR reverse primerInvitrogenTCTTTTGGGCGATGCCACTC
Sequence-based reagentTrim63-qPCR forward primerInvitrogenGGGAACGACCGAGTTCAGAC
Sequence-based reagentTrim63-qPCR reverse primerInvitrogenGCGTCAAACTTGTGGCTCAG
Sequence-based reagentFbxo30-qPCR forward primerInvitrogenTGCAGTGGGGGAAAAAGAAGT
Sequence-based reagentFbxo30-qPCR reverse primerInvitrogenTGCAGTACTGAATCGCCACA
Sequence-based reagentFbxo21-qPCR forward primerInvitrogenACTCCATCGGGCTCGTTATG
Sequence-based reagentFbxo21-qPCR reverse primerInvitrogenTGTTTCGGATCCACTCGTGC
Sequence-based reagentMap1lc3b-qPCR forward primerInvitrogenGCCGGAGCTTCGAACAAAGA
Sequence-based reagentMap1lc3b-qPCR reverse primerInvitrogenGCTTCTCACCCTTGTATCGC
Sequence-based reagentGabarapl1-qPCR forward primerInvitrogenACAACACTATCCCTCCCACC
Sequence-based reagentGabarapl1-qPCR reverse primerInvitrogenGCTTCTGCCTCATTTCCCGTA
Sequence-based reagentRn18s-qPCR forward primerInvitrogenTCCCAGTAAGTGCGGGTCATA
Sequence-based reagentRn18s-qPCR reverse primerInvitrogenCGAGGGCCTCACTAAACCATC
Peptide, recombinant proteinGST-μ1PMID: 23478262GST-tagged mouse m1
Peptide, recombinant proteinGST-μ2This studyGST-tagged mouse m2
Peptide, recombinant proteinGST-C-μ2This studyGST-tagged mouse m2 C-terminal domain
Peptide, recombinant proteinHis-C-μ2This study6×His-tagged rat m2 C-terminal domain
Peptide, recombinant proteinGY(608)MPMSPG-IRS-1 peptideToray Research Center, Inc.Used for co-crystalization
Peptide, recombinant proteinDY(628)MPMSPK-IRS-1 peptideToray Research Center, Inc.Used for co-crystalization
Peptide, recombinant proteinGY(658)MMMSPS-IRS-1 peptideToray Research Center, Inc.Used for co-crystalization
Peptide, recombinant proteinrecombinant human IGF-IAstellas Pharma Inc.A kind gift from T. Ohkuma,Astellas Pharma Inc.
Peptide, recombinant proteinrecombinant human EGFThermo Fisher ScientificThermo Fisher Scientific: PHG0315
Chemical compound, drugLipofectamine LTXInvitrogenInvitrogen: 15338100
Chemical compound, drugLipofectamine RNAiMAXInvitrogenInvitrogen: 13778075
Chemical compound, drugleupeptinPEPTIDE INSTITUTE, INC.PEPTIDE INSTITUTE: 4041
Chemical compound, drugpepstatin ASigma-AldrichSigma-Aldrich: P5318-5MG
Chemical compound, drugTorin1Cayman ChemicalCayman Chemical: 10997
Chemical compound, drugrapamycinSigma-AldrichSigma-Aldrich: 37094-10MG
Chemical compound, drugprimaquine bisphosphateSigma-AldrichSigma-Aldrich: 160393-1G
Chemical compound, drugcycloheximidenacalai tesquenacalai tesque: 06741-04
Chemical compound, drugEZ-Link NHS-LC-BiotinPiercePierce: 21336
Chemical compound, drugBiotin-SS-Sulfo-OSuDojindoDojindo: B572
Chemical compound, drugLysoTracker Red DND-99Molecular ProbesMolecular Probes: L7528
Chemical compound, drugTransferrin from human serum, Alexa Fluor 546 conjugateMolecular ProbesMolecular Probes: T23364
Chemical compound, drugHoechst 33342Molecular ProbesMolecular Probes: H3570
Chemical compound, drugReverTra Ace qPCR Master MixTOYOBOTOYOBO: FSQ-201
Chemical compound, drugTHUNDERBIRD SYBR qPCR MixTOYOBOTOYOBO: QPS-201
Chemical compound, drugcOmplete EDTA-free protease inhibitor cocktailRocheRoche: 11873580001
Software, algorithmFijiPMID: 22743772RRID: SCR_002285
Software, algorithmHKL2000PMID: 27754618
Software, algorithmCCP4 suitePMID: 21460441RRID: SCR_007255
Software, algorithmMOLREPdoi:10.1107/S0021889897006766
Software, algorithmREFMAC5PMID: 15299926RRID: SCR_014225
software, algorithmPHENIXPMID: 20124702RRID: SCR_014224
Software, algorithmCOOTPMID: 15572765RRID: SCR_014222
Software, algorithmPyMOLThe PyMOL Molecular Graphics SystemRRID: SCR_000305
OtherLenti-X ConcentratorClontechClonetech: 631231
OtherGlutathione Sepharose 4BGE HealthcareGE Healthcare: 17075601
OtherProtein G Seharose Fast FlowGE HealthcareGE Healthcare: 17061801
OtherStreptavidin AgarosePiercePierce: 20347
OtherHisTrap HP columnGE HealthcareGE Healthcare: 17524801
OtherHiTrap SP HP columnGE HealthcareGE Healthcare: 17115101
OtherHiLoad 16/60 Superdex200 columnGE HealthcareGE Healthcare: 17-1069-01

Additional files

Download links