Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior

  1. Iris IA Groen  Is a corresponding author
  2. Michelle R Greene
  3. Christopher Baldassano
  4. Li Fei-Fei
  5. Diane M Beck
  6. Chris I Baker
  1. National Institutes of Health, United States
  2. Bates College, United States
  3. Princeton University, United States
  4. Stanford University, United States
  5. University of Illinois at Urbana-Champaign, United States

Abstract

Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

Article and author information

Author details

  1. Iris IA Groen

    Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, United States
    For correspondence
    iris.groen@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5536-6128
  2. Michelle R Greene

    Neuroscience Program, Bates College, Lewiston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher Baldassano

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3540-5019
  4. Li Fei-Fei

    Stanford Vision Lab, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Diane M Beck

    Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chris I Baker

    Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6861-8964

Funding

National Institutes of Health (ZIAMH002909)

  • Iris IA Groen
  • Chris I Baker

Netherlands Organization for Scientific Research (Rubicon Fellowship)

  • Iris IA Groen

Office of Naval Research (Multidisciplinary Research Initiative Grant N000141410671)

  • Li Fei-Fei
  • Diane M Beck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants had normal or corrected-to-normal vision and gave written informed consent as part of the study protocol (93 M-0170, NCT00001360) prior to participation in the study. The study was approved by the Institutional Review Board of the National Institutes of Health and was conducted according to the Declaration of Helsinki.

Reviewing Editor

  1. Doris Y Tsao, California Institute of Technology, United States

Publication history

  1. Received: October 19, 2017
  2. Accepted: March 2, 2018
  3. Accepted Manuscript published: March 7, 2018 (version 1)
  4. Version of Record published: March 20, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,051
    Page views
  • 678
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iris IA Groen
  2. Michelle R Greene
  3. Christopher Baldassano
  4. Li Fei-Fei
  5. Diane M Beck
  6. Chris I Baker
(2018)
Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior
eLife 7:e32962.
https://doi.org/10.7554/eLife.32962

Further reading

    1. Neuroscience
    Brian D Mueller, Sean A Merrill ... Erik M Jorgensen
    Research Article Updated

    Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.

    1. Cell Biology
    2. Neuroscience
    Yu Wang, Meghan Lee Arnold ... Barth D Grant
    Research Article Updated

    Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.