Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

  1. Victor Ovchinnikov
  2. Joy E Louveau
  3. John P Barton
  4. Martin Karplus  Is a corresponding author
  5. Arup K Chakraborty  Is a corresponding author
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest specific classes of evolutionary lineages: if germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required to enable evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.

Article and author information

Author details

  1. Victor Ovchinnikov

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Joy E Louveau

    Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. John P Barton

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1467-421X
  4. Martin Karplus

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    For correspondence
    marci@tammy.harvard.edu
    Competing interests
    No competing interests declared.
  5. Arup K Chakraborty

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    arupc@MIT.EDU
    Competing interests
    Arup K Chakraborty, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1268-9602

Funding

Lawrence Livermore National Laboratory (LLC Award #B620960)

  • Victor Ovchinnikov
  • Joy E Louveau
  • Martin Karplus
  • Arup K Chakraborty

Ragon Institute

  • Joy E Louveau
  • John P Barton
  • Arup K Chakraborty

CHARMM development project

  • Victor Ovchinnikov
  • Martin Karplus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, Ecole Normale Superieure, France

Version history

  1. Received: October 23, 2017
  2. Accepted: February 13, 2018
  3. Accepted Manuscript published: February 14, 2018 (version 1)
  4. Version of Record published: February 27, 2018 (version 2)

Copyright

© 2018, Ovchinnikov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,055
    views
  • 726
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Victor Ovchinnikov
  2. Joy E Louveau
  3. John P Barton
  4. Martin Karplus
  5. Arup K Chakraborty
(2018)
Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies
eLife 7:e33038.
https://doi.org/10.7554/eLife.33038

Share this article

https://doi.org/10.7554/eLife.33038

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.