Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

  1. Victor Ovchinnikov
  2. Joy E Louveau
  3. John P Barton
  4. Martin Karplus  Is a corresponding author
  5. Arup K Chakraborty  Is a corresponding author
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest specific classes of evolutionary lineages: if germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required to enable evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.

Article and author information

Author details

  1. Victor Ovchinnikov

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Joy E Louveau

    Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. John P Barton

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1467-421X
  4. Martin Karplus

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    For correspondence
    marci@tammy.harvard.edu
    Competing interests
    No competing interests declared.
  5. Arup K Chakraborty

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    arupc@MIT.EDU
    Competing interests
    Arup K Chakraborty, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1268-9602

Funding

Lawrence Livermore National Laboratory (LLC Award #B620960)

  • Victor Ovchinnikov
  • Joy E Louveau
  • Martin Karplus
  • Arup K Chakraborty

Ragon Institute

  • Joy E Louveau
  • John P Barton
  • Arup K Chakraborty

CHARMM development project

  • Victor Ovchinnikov
  • Martin Karplus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ovchinnikov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,250
    views
  • 745
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Victor Ovchinnikov
  2. Joy E Louveau
  3. John P Barton
  4. Martin Karplus
  5. Arup K Chakraborty
(2018)
Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies
eLife 7:e33038.
https://doi.org/10.7554/eLife.33038

Share this article

https://doi.org/10.7554/eLife.33038

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.