Abstract

Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies.

Data availability

Sequencing data are in GEO under the accession code GSE96076

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael J Moore

    Laboratory of Molecular Neuro-Onology, The Rockefeller University, New York, United States
    Competing interests
    Michael J Moore, currently affiliated with Regeneron Phrmaceuticals. The author has no other financial competing interests to declare.
  2. Nathalie E Blachere

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. John J Fak

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Christopher Y Park

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Kirsty Sawicka

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. Salina Parveen

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Ilana Zucker-Scharff

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  8. Bruno Moltedo

    The Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  9. Alexander Y Rudensky

    The Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  10. Robert B Darnell

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

National Institutes of Health

  • Robert B Darnell

Starr Foundation

  • Robert B Darnell

Jane Coffin Childs Memorial Fund for Medical Research

  • Michael J Moore

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse strains were maintained at the University of California, San Francisco (UCSF) specific pathogen-free animal facility under protocol number AN110094. All animal protocols were approved by and in accordance with the guidelines established by the Institutional Animal Care and Use Committee and Laboratory Animal Resource Center

Copyright

© 2018, Moore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,452
    views
  • 971
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Moore
  2. Nathalie E Blachere
  3. John J Fak
  4. Christopher Y Park
  5. Kirsty Sawicka
  6. Salina Parveen
  7. Ilana Zucker-Scharff
  8. Bruno Moltedo
  9. Alexander Y Rudensky
  10. Robert B Darnell
(2018)
ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity
eLife 7:e33057.
https://doi.org/10.7554/eLife.33057

Share this article

https://doi.org/10.7554/eLife.33057

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.