Abstract

Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies.

Data availability

Sequencing data are in GEO under the accession code GSE96076

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael J Moore

    Laboratory of Molecular Neuro-Onology, The Rockefeller University, New York, United States
    Competing interests
    Michael J Moore, currently affiliated with Regeneron Phrmaceuticals. The author has no other financial competing interests to declare.
  2. Nathalie E Blachere

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  3. John J Fak

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Christopher Y Park

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Kirsty Sawicka

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. Salina Parveen

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Ilana Zucker-Scharff

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  8. Bruno Moltedo

    The Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  9. Alexander Y Rudensky

    The Immunology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  10. Robert B Darnell

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

National Institutes of Health

  • Robert B Darnell

Starr Foundation

  • Robert B Darnell

Jane Coffin Childs Memorial Fund for Medical Research

  • Michael J Moore

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse strains were maintained at the University of California, San Francisco (UCSF) specific pathogen-free animal facility under protocol number AN110094. All animal protocols were approved by and in accordance with the guidelines established by the Institutional Animal Care and Use Committee and Laboratory Animal Resource Center

Copyright

© 2018, Moore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,667
    views
  • 993
    downloads
  • 118
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Moore
  2. Nathalie E Blachere
  3. John J Fak
  4. Christopher Y Park
  5. Kirsty Sawicka
  6. Salina Parveen
  7. Ilana Zucker-Scharff
  8. Bruno Moltedo
  9. Alexander Y Rudensky
  10. Robert B Darnell
(2018)
ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity
eLife 7:e33057.
https://doi.org/10.7554/eLife.33057

Share this article

https://doi.org/10.7554/eLife.33057

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.