Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis

  1. Michael Taschner
  2. Anna Lorentzen
  3. André Mourão
  4. Toby Collins
  5. Grace M Freke
  6. Dale Moulding
  7. Jerome Basquin
  8. Dagan Jenkins  Is a corresponding author
  9. Esben Lorentzen  Is a corresponding author
  1. Aarhus University, Denmark
  2. Helmholtz Zentrum München, Germany
  3. University College London, United Kingdom
  4. Max Planck Institute of Biochemistry, Germany

Abstract

Oligomeric assemblies of intraflagellar transport (IFT) particles build cilia through sequential recruitment and transport of ciliary cargo proteins within cilia. Here we present the 1.8Å resolution crystal structure of the Chlamydomonas IFT-B protein IFT80, which reveals the architecture of two N-terminal b-propellers followed by an a-helical extension. The N-terminal b-propeller tethers IFT80 to the IFT-B complex via IFT38 whereas the second b-propeller and the C-terminal a-helical extension result in IFT80 homo-dimerization. Using CRISPR/Cas to create biallelic Ift80 frameshift mutations in IMCD3 mouse cells, we demonstrate that IFT80 is absolutely required for ciliogenesis. Structural mapping and rescue experiments reveal that human disease-causing missense mutations do not cluster within IFT80 and form functional IFT particles. Unlike missense mutant forms of IFT80, deletion of the C-terminal dimerization domain prevented rescue of ciliogenesis. Taken together our results may provide a first insight into higher order IFT complex formation likely required for IFT train formation.

Data availability

The structural coordinates for IFT80 and diffraction data have been uploaded to the protein data bank (PDB).Macros used for data analysis are available for download through links provided in the material and methods part of the manuscript.

Article and author information

Author details

  1. Michael Taschner

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Lorentzen

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. André Mourão

    Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Toby Collins

    Genetics and Genomic Medicine, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Grace M Freke

    Genetics and Genomic Medicine, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Dale Moulding

    Developmental Biology and Cancer Programmes, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jerome Basquin

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dagan Jenkins

    Genetics and Genomic Medicine, University College London, London, United Kingdom
    For correspondence
    d.jenkins@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Esben Lorentzen

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    For correspondence
    el@mbg.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6493-7220

Funding

Novo Nordisk (NNF15OC00114164)

  • Esben Lorentzen

Medical Research Council (MR/L009978/1)

  • Dagan Jenkins

Biotechnology and Biological Sciences Research Council (STU100044631)

  • Dagan Jenkins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Taschner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,196
    views
  • 398
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Taschner
  2. Anna Lorentzen
  3. André Mourão
  4. Toby Collins
  5. Grace M Freke
  6. Dale Moulding
  7. Jerome Basquin
  8. Dagan Jenkins
  9. Esben Lorentzen
(2018)
Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis
eLife 7:e33067.
https://doi.org/10.7554/eLife.33067

Share this article

https://doi.org/10.7554/eLife.33067

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    2. Physics of Living Systems
    Marta Urbanska, Yan Ge ... Jochen Guck
    Research Article

    Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.