Prediction error and repetition suppression have distinct effects on neural representations of visual information

  1. Matthew F Tang  Is a corresponding author
  2. Cooper A Smout
  3. Ehsan Arabzadeh
  4. Jason B Mattingley
  1. The University of Queensland, Australia
  2. The Australian National University, Australia

Abstract

Predictive coding theories argue that recent experience establishes expectations in the brain that generate prediction errors when violated. Prediction errors provide a possible explanation for repetition suppression, where evoked neural activity is attenuated across repeated presentations of the same stimulus. The predictive coding account argues repetition suppression arises because repeated stimuli are expected, whereas non-repeated stimuli are unexpected and thus elicit larger neural responses. Here we employed electroencephalography in humans to test the predictive coding account of repetition suppression by presenting sequences of visual gratings with orientations that were expected either to repeat or change in separate blocks of trials. We applied multivariate forward modelling to determine how orientation selectivity was affected by repetition and prediction. Unexpected stimuli were associated with significantly enhanced orientation selectivity, whereas selectivity was unaffected for repeated stimuli. Our results suggest that repetition suppression and expectation have separable effects on neural representations of visual feature information.

Data availability

The EEG data have been deposited on Dryad 10.5061/dryad.3d7kq

The following data sets were generated

Article and author information

Author details

  1. Matthew F Tang

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    For correspondence
    m.tang1@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5858-5126
  2. Cooper A Smout

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ehsan Arabzadeh

    Eccles Institute of Neuroscience, The Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason B Mattingley

    Queensland Brain Institute, The University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (CE140100007)

  • Ehsan Arabzadeh
  • Jason B Mattingley

Australian Research Council (DP170100908)

  • Ehsan Arabzadeh

Australian Research Council (FL110100103)

  • Jason B Mattingley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Each participant provided written informed consent prior to participation. The study was approved by The University of Queensland Human Research Ethics Committee (approval number 2012000392) and was in accordance with the Declaration of Helsinki

Copyright

© 2018, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,946
    views
  • 539
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew F Tang
  2. Cooper A Smout
  3. Ehsan Arabzadeh
  4. Jason B Mattingley
(2018)
Prediction error and repetition suppression have distinct effects on neural representations of visual information
eLife 7:e33123.
https://doi.org/10.7554/eLife.33123

Share this article

https://doi.org/10.7554/eLife.33123

Further reading

    1. Neuroscience
    Ziyue Zhou, Su Young Han ... Allan E Herbison
    Research Article

    One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified ‘diestrous stage’ PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.

    1. Neuroscience
    Livio Oboti, Federico Pedraja ... Rüdiger Krahe
    Research Article

    Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric ‘vocabulary’, made by individually variable and sex-specific electric signals. These are mainly characterized by brief frequency modulations of the oscillating dipole moment continuously generated by their electric organ, and are known as chirps. Different types of chirps are believed to convey specific and behaviorally salient information, serving as behavioral readouts for different internal states during behavioral observations. Despite the success of this model in neuroethology over the past seven decades, the code to decipher their electric communication remains unknown. To this aim, in this study we re-evaluate the correlations between signals and behavior offering an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps. By uncovering correlations among chirping, electric field geometry, and detectability in enriched environments, we present evidence for a previously unexplored role of chirps as specialized self-directed signals, enhancing conspecific electrolocation during social encounters.