Abstract

ATP synthases produce ATP by rotary catalysis, powered by the electrochemical proton gradient across the membrane. Understanding this fundamental process requires an atomic model of the proton pathway. We determined the structure of an intact mitochondrial ATP synthase dimer by electron cryo-microscopy at near-atomic resolution. Charged and polar residues of the a-subunit stator define two aqueous channels, each spanning one half of the membrane. Passing through a conserved membrane-intrinsic helix hairpin, the lumenal channel protonates an acidic glutamate in the c-ring rotor. Upon ring rotation, the protonated glutamate encounters the matrix channel and deprotonates. An arginine between the two channels prevents proton leakage. The steep potential gradient over the sub-nm inter-channel distance exerts a force on the deprotonated glutamate, resulting in net directional rotation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Niklas Klusch

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  2. Bonnie J Murphy

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6341-9368
  3. Deryck J Mills

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  4. Özkan Yildiz

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3659-2805
  5. Werner Kühlbrandt

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    For correspondence
    werner.kuehlbrandt@biophys.mpg.de
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4810

Funding

Max-Planck-Gesellschaft

  • Niklas Klusch
  • Bonnie J Murphy
  • Deryck J Mills
  • Özkan Yildiz
  • Werner Kühlbrandt

Deutsche Forschungsgemeinschaft

  • Niklas Klusch
  • Werner Kühlbrandt

European Molecular Biology Organization

  • Bonnie J Murphy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sjors HW Scheres, MRC Laboratory of Molecular Biology,, United Kingdom

Version history

  1. Received: November 1, 2017
  2. Accepted: December 5, 2017
  3. Accepted Manuscript published: December 6, 2017 (version 1)
  4. Version of Record published: December 29, 2017 (version 2)

Copyright

© 2017, Klusch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,721
    views
  • 910
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niklas Klusch
  2. Bonnie J Murphy
  3. Deryck J Mills
  4. Özkan Yildiz
  5. Werner Kühlbrandt
(2017)
Structural basis of proton translocation and force generation in mitochondrial ATP synthase
eLife 6:e33274.
https://doi.org/10.7554/eLife.33274

Share this article

https://doi.org/10.7554/eLife.33274

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.