1. Chromosomes and Gene Expression
Download icon

Nonsense mRNA suppression via nonstop decay

  1. Joshua A Arribere  Is a corresponding author
  2. Andrew Z Fire
  1. University of California, Santa Cruz, United States
  2. Stanford University School of Medicine, United States
Research Article
  • Cited 2
  • Views 2,596
  • Annotations
Cite this article as: eLife 2018;7:e33292 doi: 10.7554/eLife.33292

Abstract

Nonsense-mediated mRNA decay is the process by which mRNAs bearing premature stop codons are recognized and cleared from the cell. While considerable information has accumulated regarding recognition of the premature stop codon, less is known about the ensuing mRNA suppression. During the characterization of a second, distinct translational surveillance pathway (nonstop mRNA decay), we trapped intermediates in nonsense mRNA degradation. We present data in support of a model wherein nonsense-mediated decay funnels into the nonstop decay pathway in C. elegans. Specifically, our results point to SKI-exosome decay and pelota-based ribosome removal as key steps facilitating suppression and clearance of prematurely-terminated translation complexes. These results suggest a model in which premature stop codons elicit nucleolytic cleavage, with the nonstop pathway disengaging ribosomes and degrading the resultant RNA fragments to suppress ongoing expression.

Article and author information

Author details

  1. Joshua A Arribere

    Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    jarriber@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2467-7791
  2. Andrew Z Fire

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6217-8312

Funding

National Institutes of Health (R01GM37706)

  • Andrew Z Fire

National Institutes of Health (5F32GM112474-02)

  • Joshua A Arribere

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rachel Green, Johns Hopkins School of Medicine, United States

Publication history

  1. Received: November 2, 2017
  2. Accepted: January 5, 2018
  3. Accepted Manuscript published: January 8, 2018 (version 1)
  4. Version of Record published: January 22, 2018 (version 2)

Copyright

© 2018, Arribere & Fire

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,596
    Page views
  • 571
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Xiao Xu et al.
    Tools and Resources
    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Alexander Munden et al.
    Research Article Updated