Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets

  1. Christopher K Hauser
  2. Dantong Zhu
  3. Terrence R Stanford
  4. Emilio Salinas  Is a corresponding author
  1. Wake Forest School of Medicine, United States

Abstract

In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered. Here, based on computational work and single-neuron recordings from monkey frontal eye field (FEF), we show that this rise-to-threshold process starts from a dynamic initial state that already contains other incipient, internally-driven motor plans, which compete with the target-driven activity to varying degrees. The ensuing conflict resolution process, which manifests via subtle covariations between baseline activity, build-up rate, and threshold, consists of fundamentally deterministic interactions, and explains the observed RT distributions while invoking only a small amount of intrinsic randomness.

Data availability

Matlab scripts for running the model are provided as supplementary code files. Experimental data are available from the corresponding author (esalinas@wakehealth.edu) upon reasonable request.

Article and author information

Author details

  1. Christopher K Hauser

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  2. Dantong Zhu

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  3. Terrence R Stanford

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  4. Emilio Salinas

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    For correspondence
    esalinas@wakehealth.edu
    Competing interests
    Emilio Salinas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7411-5693

Funding

National Eye Institute (R01EY12389)

  • Terrence R Stanford

National Science Foundation (Graduate Research Fellowship)

  • Christopher K Hauser

National Institute of Neurological Disorders and Stroke (Training grant T32NS073553-01)

  • Christopher K Hauser

National Institute on Drug Abuse (R01DA030750)

  • Terrence R Stanford
  • Emilio Salinas

National Eye Institute (R01EY12389-S1)

  • Terrence R Stanford

National Eye Institute (R01EY021228)

  • Terrence R Stanford
  • Emilio Salinas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental subjects were two adult male rhesus monkeys (Macaca mulatta). All experimental procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals, USDA regulations, and the policies set forth by the Institutional Animal Care and Use Committee (IACUC) of Wake Forest School of Medicine under protocols A10-192, A13-088 and A16-192. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Version history

  1. Received: November 17, 2017
  2. Accepted: April 12, 2018
  3. Accepted Manuscript published: April 13, 2018 (version 1)
  4. Version of Record published: May 11, 2018 (version 2)

Copyright

© 2018, Hauser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,458
    Page views
  • 239
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher K Hauser
  2. Dantong Zhu
  3. Terrence R Stanford
  4. Emilio Salinas
(2018)
Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets
eLife 7:e33456.
https://doi.org/10.7554/eLife.33456

Further reading

    1. Neuroscience
    Stijn A Nuiten, Jan Willem de Gee ... Simon van Gaal
    Research Article

    Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.

    1. Neuroscience
    Manfred G Kitzbichler, Daniel Martins ... Neil A Harrison
    Research Article Updated

    The relationship between obesity and human brain structure is incompletely understood. Using diffusion-weighted MRI from ∼30,000 UK Biobank participants, we test the hypothesis that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two micro-structural MRI metrics: isotropic volume fraction (ISOVF), an index of free water, and intra-cellular volume fraction (ICVF), an index of neurite density. We observed significant associations with obesity in two coupled but distinct brain systems: a prefrontal/temporal/striatal system associated with ISOVF and a medial temporal/occipital/striatal system associated with ICVF. The ISOVF~WHR system colocated with expression of genes enriched for innate immune functions, decreased glial density, and high mu opioid (MOR) and other neurotransmitter receptor density. Conversely, the ICVF~WHR system co-located with expression of genes enriched for G-protein coupled receptors and decreased density of MOR and other receptors. To test whether these distinct brain phenotypes might differ in terms of their underlying shared genetics or relationship to maps of the inflammatory marker C-reactive Protein (CRP), we estimated the genetic correlations between WHR and ISOVF (rg = 0.026, P = 0.36) and ICVF (rg = 0.112, P < 9×10−4) as well as comparing correlations between WHR maps and equivalent CRP maps for ISOVF and ICVF (P<0.05). These correlational results are consistent with a two-way mechanistic model whereby genetically determined differences in neurite density in the medial temporal system may contribute to obesity, whereas water content in the prefrontal system could reflect a consequence of obesity mediated by innate immune system activation.