Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets

  1. Christopher K Hauser
  2. Dantong Zhu
  3. Terrence R Stanford
  4. Emilio Salinas  Is a corresponding author
  1. Wake Forest School of Medicine, United States

Abstract

In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered. Here, based on computational work and single-neuron recordings from monkey frontal eye field (FEF), we show that this rise-to-threshold process starts from a dynamic initial state that already contains other incipient, internally-driven motor plans, which compete with the target-driven activity to varying degrees. The ensuing conflict resolution process, which manifests via subtle covariations between baseline activity, build-up rate, and threshold, consists of fundamentally deterministic interactions, and explains the observed RT distributions while invoking only a small amount of intrinsic randomness.

Data availability

Matlab scripts for running the model are provided as supplementary code files. Experimental data are available from the corresponding author (esalinas@wakehealth.edu) upon reasonable request.

Article and author information

Author details

  1. Christopher K Hauser

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  2. Dantong Zhu

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  3. Terrence R Stanford

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    No competing interests declared.
  4. Emilio Salinas

    Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
    For correspondence
    esalinas@wakehealth.edu
    Competing interests
    Emilio Salinas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7411-5693

Funding

National Eye Institute (R01EY12389)

  • Terrence R Stanford

National Science Foundation (Graduate Research Fellowship)

  • Christopher K Hauser

National Institute of Neurological Disorders and Stroke (Training grant T32NS073553-01)

  • Christopher K Hauser

National Institute on Drug Abuse (R01DA030750)

  • Terrence R Stanford
  • Emilio Salinas

National Eye Institute (R01EY12389-S1)

  • Terrence R Stanford

National Eye Institute (R01EY021228)

  • Terrence R Stanford
  • Emilio Salinas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental subjects were two adult male rhesus monkeys (Macaca mulatta). All experimental procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals, USDA regulations, and the policies set forth by the Institutional Animal Care and Use Committee (IACUC) of Wake Forest School of Medicine under protocols A10-192, A13-088 and A16-192. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2018, Hauser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,542
    views
  • 246
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher K Hauser
  2. Dantong Zhu
  3. Terrence R Stanford
  4. Emilio Salinas
(2018)
Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets
eLife 7:e33456.
https://doi.org/10.7554/eLife.33456

Share this article

https://doi.org/10.7554/eLife.33456

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.