Determining the genetic basis of anthracycline-cardiotoxicity by response QTL mapping in induced cardiomyocytes

  1. David A Knowles  Is a corresponding author
  2. Courtney K Burrows
  3. John D Blischak
  4. Kristen M Patterson
  5. Daniel J Serie
  6. Nadine Norton
  7. Carole Ober
  8. Jonathan K Pritchard
  9. Yoav Gilad
  1. Stanford University, United States
  2. University of Chicago, United States
  3. Mayo Clinic, United States

Abstract

Anthracycline-induced cardiotoxicity (ACT) is a key limiting factor in setting optimal chemotherapy regimes, with almost half of patients expected to develop congestive heart failure given high doses. However, the genetic basis of sensitivity to anthracyclines remains unclear. We created a panel of iPSC-derived cardiomyocytes from 45 individuals and performed RNA-seq after 24h exposure to varying doxorubicin dosages. The transcriptomic response is substantial: the majority of genes are differentially expressed and over 6000 genes show evidence of differential splicing, the later driven by reduced splicing fidelity in the presence of doxorubicin. We show that inter-individual variation in transcriptional response is predictive of in vitro cell damage, which in turn is associated with in vivo ACT risk. We detect 447 response-expression QTLs and 42 response-splicing QTLs, which are enriched in lower ACT GWAS p-values, supporting the in vivo relevance of our map of genetic regulation of cellular response to anthracyclines.

Data availability

All the custom analysis scripts used for this project are available at https://github.com/davidaknowles/dox (Knowles and Blischak, 2017). The suez response eQTL mapping R package is available at https://github.com/davidaknowles/suez (Knowles, 2017). The following data are available as Supplementary Data: 1) differential expression cluster assignments, 2) significant (5% FDR) eQTLs and sQTLs, 3) differential splicing results, 4) levels of cardiac troponin and the predicted transcriptomic response. In addition to the Supplementary Data included with this paper, further results are hosted at Dryad (doi:10.5061/dryad.r5t8d04) including 1) gene-by-sample matrix of RNA-seq quantification (log counts per million), 2) LeafCutter intron excision quantification 3) p-values for all tested eQTLs, reQTLs, sQTLs, and rsQTLs, 4) RARG variant response and marginal trans-eQTLs, 5) RIN, RNA concentration and other technical covariates, 6) embryoid body imaging for all iPSC lines. The RNA-seq FASTQ files will be added to the dbGaP database (Tryka et al., 2014) under dbGaP accession phs000185 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000185). The genotype data files cannot be shared because releasing genotype data from a subset of individuals in the pedigree would enable the reconstruction of genotypes of other members of the pedigree, which would violate the original protocol approved by the research ethics board (Livne et al., 2015). The summary statistics for the ACT GWAS were given to us by the authors of the study (Schneider et al., 2016; Serie et al. 2017).

The following data sets were generated
    1. Knowles DA
    (2018) Expression and splicing quantification, eQTLs and sQTLs
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.

Article and author information

Author details

  1. David A Knowles

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    knowles84@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7408-146X
  2. Courtney K Burrows

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John D Blischak

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2634-9879
  4. Kristen M Patterson

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel J Serie

    Department of Health Sciences Research, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadine Norton

    Department of Cancer Biology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carole Ober

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonathan K Pritchard

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-5236
  9. Yoav Gilad

    Department of Human Genetics, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8284-8926

Funding

NIH Office of the Director (HL092206)

  • Yoav Gilad

Howard Hughes Medical Institute

  • Jonathan K Pritchard

NIH Office of the Director (HG008140)

  • Jonathan K Pritchard

NIH Office of the Director (HG009431)

  • Jonathan K Pritchard

NIH Office of the Director (TL1 TR 432-7)

  • Courtney K Burrows

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gilean McVean, Oxford University, United Kingdom

Ethics

Human subjects: Human Subjects work was approved by the University of Chicago IRB (protocol 10-416-B). Written informed consent was obtained from all participants.

Version history

  1. Received: November 11, 2017
  2. Accepted: April 30, 2018
  3. Accepted Manuscript published: May 8, 2018 (version 1)
  4. Version of Record published: June 15, 2018 (version 2)

Copyright

© 2018, Knowles et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,247
    views
  • 516
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David A Knowles
  2. Courtney K Burrows
  3. John D Blischak
  4. Kristen M Patterson
  5. Daniel J Serie
  6. Nadine Norton
  7. Carole Ober
  8. Jonathan K Pritchard
  9. Yoav Gilad
(2018)
Determining the genetic basis of anthracycline-cardiotoxicity by response QTL mapping in induced cardiomyocytes
eLife 7:e33480.
https://doi.org/10.7554/eLife.33480

Share this article

https://doi.org/10.7554/eLife.33480

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.