Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division

Abstract

Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome's role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.

Article and author information

Author details

  1. Cuie Chen

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Ryan Cummings

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Aghapi Mordovanakis

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Alan J Hunt

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Michael Mayer

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  6. David Sept

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Yukiko M Yamashita

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    yukikomy@umich.edu
    Competing interests
    Yukiko M Yamashita, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5541-0216

Funding

Howard Hughes Medical Institute

  • Yukiko M Yamashita

National Institute of General Medical Sciences (R01GM07200606)

  • Alan J Hunt
  • Michael Mayer
  • Yukiko M Yamashita

National Institute of General Medical Sciences (R01GM118308)

  • Yukiko M Yamashita

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,348
    views
  • 462
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cuie Chen
  2. Ryan Cummings
  3. Aghapi Mordovanakis
  4. Alan J Hunt
  5. Michael Mayer
  6. David Sept
  7. Yukiko M Yamashita
(2018)
Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division
eLife 7:e33685.
https://doi.org/10.7554/eLife.33685

Share this article

https://doi.org/10.7554/eLife.33685

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.