Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells

  1. Arun M Unni  Is a corresponding author
  2. Bryant Harbourne
  3. Min Hee Oh
  4. Sophia Wild
  5. John R Ferrarone
  6. William W Lockwood  Is a corresponding author
  7. Harold Varmus  Is a corresponding author
  1. Weill Cornell Medicine, United States
  2. British Columbia Cancer Agency, Canada

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arun M Unni
  2. Bryant Harbourne
  3. Min Hee Oh
  4. Sophia Wild
  5. John R Ferrarone
  6. William W Lockwood
  7. Harold Varmus
(2018)
Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells
eLife 7:e33718.
https://doi.org/10.7554/eLife.33718

Share this article

https://doi.org/10.7554/eLife.33718