Principal cells of the brainstem's interaural sound level detector are temporal differentiators rather than integrators

  1. Tom P Franken
  2. Philip X Joris  Is a corresponding author
  3. Philip H Smith
  1. KU Leuven, Belgium
  2. University of Wisconsin-Madison, United States

Abstract

The brainstem's lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating 'chopper' responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit.

Data availability

As stated in the Transparent Reporting Form, MATLAB figures with embedded data have been made publicly available on Figshare (https://doi.org/10.6084/m9.figshare.6493409).

The following data sets were generated
    1. Tom P Franken Philip X Joris Philip H Smith
    (2018) MATLAB figures for the article
    Available on Figshare under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Article and author information

Author details

  1. Tom P Franken

    Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7160-5152
  2. Philip X Joris

    Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
    For correspondence
    Philip.Joris@med.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9759-5375
  3. Philip H Smith

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Fonds Wetenschappelijk Onderzoek (Ph.D. fellowship)

  • Tom P Franken

National Institute on Deafness and Other Communication Disorders (R01 grant DC006212)

  • Philip X Joris
  • Philip H Smith

Bijzonder Onderzoeksfonds (OT-14-118)

  • Philip X Joris

Fonds Wetenschappelijk Onderzoek (G.0961.11)

  • Philip X Joris

Fonds Wetenschappelijk Onderzoek (G.0A11.13)

  • Philip X Joris

Fonds Wetenschappelijk Onderzoek (G.091214N)

  • Philip X Joris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the KU Leuven Ethics Committee for Animal Experiments (protocol numbers P155/2008, P123/2010, P167/2012, P123/2013, P005/2014).

Version history

  1. Received: November 25, 2017
  2. Accepted: June 10, 2018
  3. Accepted Manuscript published: June 14, 2018 (version 1)
  4. Version of Record published: July 27, 2018 (version 2)

Copyright

© 2018, Franken et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,971
    Page views
  • 373
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom P Franken
  2. Philip X Joris
  3. Philip H Smith
(2018)
Principal cells of the brainstem's interaural sound level detector are temporal differentiators rather than integrators
eLife 7:e33854.
https://doi.org/10.7554/eLife.33854

Share this article

https://doi.org/10.7554/eLife.33854

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.