Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules

  1. Maud Martin
  2. Alexandra Veloso
  3. Jingchao Wu
  4. Eugene A Katrukha
  5. Anna Akhmanova  Is a corresponding author
  1. Utrecht University, Netherlands
  2. University of Liège, Belgium

Abstract

Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single cell protrusion.

Article and author information

Author details

  1. Maud Martin

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  2. Alexandra Veloso

    Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  3. Jingchao Wu

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  4. Eugene A Katrukha

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  5. Anna Akhmanova

    Department of Biology, Utrecht University, Utrecht, Netherlands
    For correspondence
    a.akhmanova@uu.nl
    Competing interests
    Anna Akhmanova, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9048-8614

Funding

European Research Council (Synergy 609822)

  • Anna Akhmanova

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALW Open Program grant 824.15.017)

  • Anna Akhmanova

Marie Sklodowska-Curie Actions (IEF fellowship)

  • Maud Martin

China Scholarship Council (PhD fellowship)

  • Jingchao Wu

Fonds De La Recherche Scientifique - FNRS (FRIA fellowship)

  • Alexandra Veloso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Ethics

Animal experimentation: All animal experiments were approved by the animal welfare committee of the University of Liege (protocol number 14-1556, laboratory agreement number LA 1610002).

Version history

  1. Received: November 26, 2017
  2. Accepted: March 13, 2018
  3. Accepted Manuscript published: March 16, 2018 (version 1)
  4. Version of Record published: April 13, 2018 (version 2)

Copyright

© 2018, Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,482
    views
  • 1,071
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maud Martin
  2. Alexandra Veloso
  3. Jingchao Wu
  4. Eugene A Katrukha
  5. Anna Akhmanova
(2018)
Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules
eLife 7:e33864.
https://doi.org/10.7554/eLife.33864

Share this article

https://doi.org/10.7554/eLife.33864

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.