Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration

  1. Povilas Karvelis
  2. Aaron R Seitz
  3. Stephen M Lawrie
  4. Peggy Seriès  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. University of California, Riverside, United States

Abstract

Recent theories propose that schizophrenia/schizotypy and autistic spectrum disorder are related to impairments in Bayesian inference i.e. how the brain integrates sensory information (likelihoods) with prior knowledge. However existing accounts fail to clarify: i) how proposed theories differ in accounts of ASD vs. schizophrenia and ii) whether the impairments result from weaker priors or enhanced likelihoods. Here, we directly address these issues by characterizing how 91 healthy participants, scored for autistic and schizotypal traits, implicitly learned and combined priors with sensory information. This was accomplished through a visual statistical learning paradigm designed to quantitatively assess variations in individuals' likelihoods and priors. The acquisition of the priors was found to be intact along both traits spectra. However, autistic traits were associated with more veridical perception and weaker influence of expectations. Bayesian modeling revealed that this was due, not to weaker prior expectations, but to more precise sensory representations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source code has been included, which can be used to reproduce the results figures.

Article and author information

Author details

  1. Povilas Karvelis

    School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Aaron R Seitz

    Department of Psychology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen M Lawrie

    Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2444-5675
  4. Peggy Seriès

    School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    pseries@inf.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8580-7975

Funding

NARSAD (Young investigator grant 19271)

  • Peggy Seriès

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed written consent and received monetary compensation for participation. The study was approved by the University of Edinburgh School of Informatics Ethics Panel.

Copyright

© 2018, Karvelis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,969
    views
  • 660
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Povilas Karvelis
  2. Aaron R Seitz
  3. Stephen M Lawrie
  4. Peggy Seriès
(2018)
Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration
eLife 7:e34115.
https://doi.org/10.7554/eLife.34115

Share this article

https://doi.org/10.7554/eLife.34115

Further reading

    1. Neuroscience
    Christian Thome, Jan Maximilian Janssen ... Maren Engelhardt
    Tools and Resources

    The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

    1. Neuroscience
    Sean M Perkins, Elom A Amematsro ... Mark M Churchland
    Research Article

    Decoders for brain-computer interfaces (BCIs) assume constraints on neural activity, chosen to reflect scientific beliefs while yielding tractable computations. Recent scientific advances suggest that the true constraints on neural activity, especially its geometry, may be quite different from those assumed by most decoders. We designed a decoder, MINT, to embrace statistical constraints that are potentially more appropriate. If those constraints are accurate, MINT should outperform standard methods that explicitly make different assumptions. Additionally, MINT should be competitive with expressive machine learning methods that can implicitly learn constraints from data. MINT performed well across tasks, suggesting its assumptions are well-matched to the data. MINT outperformed other interpretable methods in every comparison we made. MINT outperformed expressive machine learning methods in 37 of 42 comparisons. MINT’s computations are simple, scale favorably with increasing neuron counts, and yield interpretable quantities such as data likelihoods. MINT’s performance and simplicity suggest it may be a strong candidate for many BCI applications.