Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis

Abstract

Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rqua, a gene encoding an RQ biosynthetic enzyme. Rqua is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rqua from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RQUA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.

Data availability

All data is available on Dryad DOI: https://doi.org/10.5061/dryad.qp745

The following data sets were generated

Article and author information

Author details

  1. Courtney W Stairs

    Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6650-0970
  2. Laura Eme

    Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Sergio Muñoz-Gómez

    Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro Cohen

    Proteomics Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Graham Dellaire

    Department of Pathology, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3466-6316
  6. Jennifer N Shepherd

    Department of Chemistry and Biochemistry, Gonzaga University, Spokane, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. James P Fawcett

    Proteomics Core Facility, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew J Roger

    Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
    For correspondence
    Andrew.Roger@Dal.Ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1370-9820

Funding

Canadian Institutes of Health Research (MOP 142349)

  • Andrew J Roger

National Institutes of Health (1R15GM096398-01)

  • Jennifer N Shepherd

Natural Sciences and Engineering Research Council of Canada

  • Courtney W Stairs

Killam Trusts

  • Courtney W Stairs

Natural Sciences and Engineering Research Council of Canada (RGPIN 05616)

  • Graham Dellaire

Canadian Institutes of Health Research (MOP 341174)

  • James P Fawcett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Stairs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,210
    views
  • 510
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Courtney W Stairs
  2. Laura Eme
  3. Sergio Muñoz-Gómez
  4. Alejandro Cohen
  5. Graham Dellaire
  6. Jennifer N Shepherd
  7. James P Fawcett
  8. Andrew J Roger
(2018)
Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis
eLife 7:e34292.
https://doi.org/10.7554/eLife.34292

Share this article

https://doi.org/10.7554/eLife.34292

Further reading

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.