Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

  1. Carsten Wolff  Is a corresponding author
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak  Is a corresponding author
  11. Anastasios Pavlopoulos  Is a corresponding author
  1. Humboldt- Universität zu Berlin, Germany
  2. Institut Pasteur, France
  3. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  4. Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
  5. Max Delbrück Center for Molecular Medicine, Germany
  6. Max Planck Institute of Cell Biology and Genetics, Germany

Abstract

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Carsten Wolff

    Institut für Biologie, Humboldt- Universität zu Berlin, Berlin, Germany
    For correspondence
    carsten.wolff@rz.hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5926-7338
  2. Jean-Yves Tinevez

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Pietzsch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Evangelia Stamataki

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Harich

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Léo Guignard

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Preibisch

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Spencer Shorte

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Philipp J Keller

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-4920
  10. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    For correspondence
    tomancak@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2222-9370
  11. Anastasios Pavlopoulos

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    pavlopoulosa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-5815

Funding

Howard Hughes Medical Institute

  • Evangelia Stamataki
  • Léo Guignard
  • Philipp J Keller
  • Anastasios Pavlopoulos

European Commission Marie Sklodowska-Curie Actions (FP7-IEF 302235)

  • Anastasios Pavlopoulos

Max-Planck-Institute of Molecular Cell Biology and Genetics

  • Tobias Pietzsch
  • Benjamin Harich
  • Pavel Tomancak

European Research Council (260746)

  • Tobias Pietzsch
  • Pavel Tomancak

Einstein Stiftung Berlin (A-2012_114)

  • Carsten Wolff

Institut Pasteur

  • Jean-Yves Tinevez
  • Spencer Shorte

Agence Nationale de la Recherche

  • Jean-Yves Tinevez
  • Spencer Shorte

Helmholtz-Gemeinschaft

  • Stephan Preibisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,273
    views
  • 998
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carsten Wolff
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak
  11. Anastasios Pavlopoulos
(2018)
Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb
eLife 7:e34410.
https://doi.org/10.7554/eLife.34410

Share this article

https://doi.org/10.7554/eLife.34410

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.