Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

  1. Carsten Wolff  Is a corresponding author
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak  Is a corresponding author
  11. Anastasios Pavlopoulos  Is a corresponding author
  1. Humboldt- Universität zu Berlin, Germany
  2. Institut Pasteur, France
  3. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  4. Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
  5. Max Delbrück Center for Molecular Medicine, Germany
  6. Max Planck Institute of Cell Biology and Genetics, Germany

Abstract

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Carsten Wolff

    Institut für Biologie, Humboldt- Universität zu Berlin, Berlin, Germany
    For correspondence
    carsten.wolff@rz.hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5926-7338
  2. Jean-Yves Tinevez

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Pietzsch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Evangelia Stamataki

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Harich

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Léo Guignard

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Preibisch

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Spencer Shorte

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Philipp J Keller

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-4920
  10. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    For correspondence
    tomancak@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2222-9370
  11. Anastasios Pavlopoulos

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    pavlopoulosa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-5815

Funding

Howard Hughes Medical Institute

  • Evangelia Stamataki
  • Léo Guignard
  • Philipp J Keller
  • Anastasios Pavlopoulos

European Commission Marie Sklodowska-Curie Actions (FP7-IEF 302235)

  • Anastasios Pavlopoulos

Max-Planck-Institute of Molecular Cell Biology and Genetics

  • Tobias Pietzsch
  • Benjamin Harich
  • Pavel Tomancak

European Research Council (260746)

  • Tobias Pietzsch
  • Pavel Tomancak

Einstein Stiftung Berlin (A-2012_114)

  • Carsten Wolff

Institut Pasteur

  • Jean-Yves Tinevez
  • Spencer Shorte

Agence Nationale de la Recherche

  • Jean-Yves Tinevez
  • Spencer Shorte

Helmholtz-Gemeinschaft

  • Stephan Preibisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,293
    views
  • 999
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carsten Wolff
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak
  11. Anastasios Pavlopoulos
(2018)
Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb
eLife 7:e34410.
https://doi.org/10.7554/eLife.34410

Share this article

https://doi.org/10.7554/eLife.34410

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.