Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

  1. Carsten Wolff  Is a corresponding author
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak  Is a corresponding author
  11. Anastasios Pavlopoulos  Is a corresponding author
  1. Humboldt- Universität zu Berlin, Germany
  2. Institut Pasteur, France
  3. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  4. Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
  5. Max Delbrück Center for Molecular Medicine, Germany
  6. Max Planck Institute of Cell Biology and Genetics, Germany

Abstract

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Carsten Wolff

    Institut für Biologie, Humboldt- Universität zu Berlin, Berlin, Germany
    For correspondence
    carsten.wolff@rz.hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5926-7338
  2. Jean-Yves Tinevez

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Pietzsch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Evangelia Stamataki

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Harich

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Léo Guignard

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Preibisch

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Spencer Shorte

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Philipp J Keller

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-4920
  10. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    For correspondence
    tomancak@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2222-9370
  11. Anastasios Pavlopoulos

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    pavlopoulosa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-5815

Funding

Howard Hughes Medical Institute

  • Evangelia Stamataki
  • Léo Guignard
  • Philipp J Keller
  • Anastasios Pavlopoulos

European Commission Marie Sklodowska-Curie Actions (FP7-IEF 302235)

  • Anastasios Pavlopoulos

Max-Planck-Institute of Molecular Cell Biology and Genetics

  • Tobias Pietzsch
  • Benjamin Harich
  • Pavel Tomancak

European Research Council (260746)

  • Tobias Pietzsch
  • Pavel Tomancak

Einstein Stiftung Berlin (A-2012_114)

  • Carsten Wolff

Institut Pasteur

  • Jean-Yves Tinevez
  • Spencer Shorte

Agence Nationale de la Recherche

  • Jean-Yves Tinevez
  • Spencer Shorte

Helmholtz-Gemeinschaft

  • Stephan Preibisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Version history

  1. Received: December 15, 2017
  2. Accepted: March 26, 2018
  3. Accepted Manuscript published: March 29, 2018 (version 1)
  4. Version of Record published: May 1, 2018 (version 2)

Copyright

© 2018, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,937
    views
  • 971
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carsten Wolff
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak
  11. Anastasios Pavlopoulos
(2018)
Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb
eLife 7:e34410.
https://doi.org/10.7554/eLife.34410

Share this article

https://doi.org/10.7554/eLife.34410

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.