Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

  1. Carsten Wolff  Is a corresponding author
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak  Is a corresponding author
  11. Anastasios Pavlopoulos  Is a corresponding author
  1. Humboldt- Universität zu Berlin, Germany
  2. Institut Pasteur, France
  3. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  4. Janelia Farm Research Campus, Howard Hughes Medical Institute, United States
  5. Max Delbrück Center for Molecular Medicine, Germany
  6. Max Planck Institute of Cell Biology and Genetics, Germany

Abstract

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Carsten Wolff

    Institut für Biologie, Humboldt- Universität zu Berlin, Berlin, Germany
    For correspondence
    carsten.wolff@rz.hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5926-7338
  2. Jean-Yves Tinevez

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Pietzsch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Evangelia Stamataki

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Harich

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Léo Guignard

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Preibisch

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Spencer Shorte

    Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Philipp J Keller

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-4920
  10. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    For correspondence
    tomancak@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2222-9370
  11. Anastasios Pavlopoulos

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    pavlopoulosa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-5815

Funding

Howard Hughes Medical Institute

  • Evangelia Stamataki
  • Léo Guignard
  • Philipp J Keller
  • Anastasios Pavlopoulos

European Commission Marie Sklodowska-Curie Actions (FP7-IEF 302235)

  • Anastasios Pavlopoulos

Max-Planck-Institute of Molecular Cell Biology and Genetics

  • Tobias Pietzsch
  • Benjamin Harich
  • Pavel Tomancak

European Research Council (260746)

  • Tobias Pietzsch
  • Pavel Tomancak

Einstein Stiftung Berlin (A-2012_114)

  • Carsten Wolff

Institut Pasteur

  • Jean-Yves Tinevez
  • Spencer Shorte

Agence Nationale de la Recherche

  • Jean-Yves Tinevez
  • Spencer Shorte

Helmholtz-Gemeinschaft

  • Stephan Preibisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,244
    views
  • 996
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carsten Wolff
  2. Jean-Yves Tinevez
  3. Tobias Pietzsch
  4. Evangelia Stamataki
  5. Benjamin Harich
  6. Léo Guignard
  7. Stephan Preibisch
  8. Spencer Shorte
  9. Philipp J Keller
  10. Pavel Tomancak
  11. Anastasios Pavlopoulos
(2018)
Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb
eLife 7:e34410.
https://doi.org/10.7554/eLife.34410

Share this article

https://doi.org/10.7554/eLife.34410

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.